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A B S T R A C T

Diversity of cellular metabolism can be harnessed to produce a large space of molecules. However, development
of optimal strains with high product titers, rates, and yields required for industrial production is laborious and
expensive. To accelerate the strain engineering process, we have recently introduced a modular cell design
concept that enables rapid generation of optimal production strains by systematically assembling a modular cell
with an exchangeable production module(s) to produce target molecules efficiently. In this study, we formulated
the modular cell design concept as a general multiobjective optimization problem with flexible design objectives
derived from mass balance. We developed algorithms and an associated software package, named ModCell2, to
implement the design. We demonstrated that ModCell2 can systematically identify genetic modifications to
design modular cells that can couple with a variety of production modules and exhibit a minimal tradeoff among
modularity, performance, and robustness. Analysis of the modular cell designs revealed both intuitive and
complex metabolic architectures enabling modular production of these molecules. We envision ModCell2 pro-
vides a powerful tool to guide modular cell engineering and sheds light on modular design principles of bio-
logical systems.

1. Introduction

Engineering microbial cells to produce bulk and specialty chemicals
from renewable and sustainable feedstocks is becoming a feasible al-
ternative to traditional chemical methods that rely on petroleum
feedstocks (Nielsen and Keasling Jay, 2016). However, only a handful
of chemicals, out of the many possible molecules offered by nature, are
industrially produced by microbial conversion, mainly because the
current strain engineering process is laborious and expensive for prof-
itable biochemical production (Trinh and Mendoza, 2016). Thus, in-
novative technologies to enable rapid and economical strain en-
gineering are needed to harness a large space of industrially-relevant
molecules (Connelly et al., 2015).

The modular organization of biological systems has been a source of
inspiration for synthetic biology and metabolic engineering (Sauro,
2008; Purnick and Weiss, 2009). Modular pathway engineering breaks
down target pathways into tractable pathway modules that can be fi-
nely tuned for optimal production of desirable chemicals (Yadav et al.,
2012; Biggs et al., 2014). Harnessing combinatorial pathways (e.g.,
fatty acid biosynthesis, reverse beta oxidation, polyketide or isoprenoid
biosynthesis) is one excellent example of modular pathway engineering.
These pathways contain metabolic similarity (or combinatorial

characteristics) such as a group of common specific enzymes capable of
catalyzing linear reaction steps (Rodriguez et al., 2014) and/or elon-
gation cycles (Cheong et al., 2016; Tseng and Prather, 2012; Xu et al.,
2013) and hence are capable of producing a large library of unique
molecules (Ng et al., 2016). Since these molecules are derived from a
common precursor metabolite(s), the optimal production strains often
share common genotypes and phenotypes, and hence, the costly strain
optimization process is only performed once for these molecules. Re-
markably, this advantageous strain optimization strategy can be ap-
plied even for production of molecules derived from different pre-
cursors, using the concept of modular cell (ModCell) design (Trinh and
Mendoza, 2016; Trinh et al., 2015; Wilbanks et al., 2017).

With the arrival of constraint-based stoichiometric models of cel-
lular metabolism, various computational algorithms have been devel-
oped to guide strain engineering (Long et al., 2015; Machado and
Herrgård, 2015; Chowdhury et al., 2015). These methods have featured
the design of strains capable of growth-coupled product synthesis
(GCP), enabling adaptive laboratory evolution of these designed strains
to enhance product titers, rates, and yields (Wilbanks et al., 2017; Fong
et al., 2005; Trinh and Srienc, 2009; Otero et al., 2013). Two ap-
proaches on growth-coupled production have been formulated ─ one
based on the coexistence of maximum growth and product synthesis
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rates during the growth phase (Burgard et al., 2003) and the other
based on the obligate requirement of optimal product synthesis in any
growth phase (Trinh et al., 2008). The distinction between these two
types of growth coupling are also referred to weak coupling (wGCP) and
strong coupling (sGCP) (Machado and Herrgård, 2015; Klamt and
Mahadevan, 2015).

Development of most strain design algorithms has been focused on
overproduction of only one target molecule. The first algorithm pro-
posed for modular cell design compatible for overproduction of mul-
tiple target molecules is MODCELL (Trinh et al., 2015), which guided
several experimental studies (Wilbanks et al., 2017; Wierzbicki et al.,
2016; Layton and Trinh, 2014, 2016a, 2016b). It works by generating
sGCP strain designs for each target product based on elementary mode
analysis (Trinh et al., 2009), and then comparing the design strategies
of different products to identify common genetic modifications among
them. A similar approach was adapted in a subsequent work (Jouhten
et al., 2016). For MODCELL to find optimal solutions for multiple target
products, it requires: 1) all possible designs above a predefined
minimum product yield and with minimal reaction deletion sets for
each production network are enumerated, which might lead to a large
number of solutions for each network and hence make the problem
computationally intractable, and 2) the resulting designs for all pro-
ducts must be compared to identify common interventions, which is a
computationally-hard, set-covering problem. Thus, the current enu-
merative approach of MODCELL might become intractable very
quickly, especially for large-scale metabolic networks, and potentially
generate non-optimal designs, i.e., requiring more knock-outs than
necessary or including fewer products than possible.

In this study, we generalized the concept of modular cell design and
addressed the computational limitation of implementing it. We devel-
oped a novel computational platform (ModCell2), based on multi-
objective optimization and analysis of mass balance of cellular meta-
bolism, to guide the design of modular cells for large-scale metabolic
networks. We demonstrated that ModCell2 can systematically identify
genetic modifications to design modular cells that can couple with a
variety of production modules and exhibit a minimal tradeoff among
modularity, performance, and robustness. By analyzing these designs,
we further revealed both intuitive and complex metabolic architectures
enabling modularity in modular cell and production modules required
for efficient biosynthesis of target molecules.

2. Methods

2.1. Design principles of modular cell engineering

In the conventional strain engineering approach, a parent strain is
genetically modified to yield an optimal production strain to make only
a target product. To produce each new molecule, the design-build-test
cycles of strain engineering must be repeated, which is laborious and
expensive (Fig. 1). To minimize the cycles, modular cell engineering is
formulated by genetically transforming a parent strain into a modular
(chassis) cell that must be assembled with exchangeable modules to
create optimal production strains (Trinh et al., 2015). A modular cell is
designed to contain core metabolic pathways shared across designed
optimal production strains. Exchangeable modules are production
pathways designed to synthesize desirable chemicals. A module can
contain endogenous and/or heterologous reactions. A combination of a
modular cell and a production module(s) is required to balance redox,
energy, and precursor metabolites for sustaining cellular metabolism
during growth and/or stationary phases and exhibiting only desirable
phenotypes. Practically, modular cell engineering can be applied to
single or mixed cultures where production module(s) can be embedded
in a modular cell and activated by intracellular and/or extracellular
cues such as light and/or signaling molecules.

2.2. Multiobjective strain design framework for modular cell engineering

For modular cell engineering, we seek to design a modular cell
compatible with as many production modules as possible to achieve
only desirable production phenotypes while requiring minimal genetic
modifications. Since all production modules must leverage cellular re-
sources of the modular cell (e.g. precursor metabolites, cofactors, and
energy), they form competing objectives. Therefore, the framework of
modular cell engineering can be formulated as a multiobjective opti-
mization problem, named ModCell2, as described below.
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where i, j, and k are indices of metabolite i, reaction j, and production
network k, respectively; fk is a design objective for network k; cjk re-
presents the cellular objective for reaction j in network k associated
with a design objective defined in Eqs. 8–10; vjk (mmol/g DCW/h) is
metabolic flux of reaction j bounded by ljk and ujk in network k, re-
spectively; yj and zjk are binary design variables for deletion reaction j
and endogenous module-specific reaction j in network k, respectively; α
and βk are design parameters for deletion and endogenous module re-
actions, respectively; Sijk is a stoichiometric coefficient of metabolite in
reaction j of network k; and C (Eq. (4)) is the candidate reaction set
(Supplementary File S1). The goal of the optimization problem is to
simultaneously maximize all design objectives fk.

2.2.1. Steady-state mass balance constraints of cellular metabolism
Quasi steady-state flux balance of cellular metabolism (Eq. (2)) is

used as metabolic constraints for Eq. (1) (Price et al., 2003; Palsson,
2015). A model corresponding to each modular production strain (i.e.
production network k) will be derived from a parent strain (i.e. parent
network) by adding necessary reactions (i.e. a production module) to
produce a target molecule. A feasible flux distribution for each pro-
duction network is described by mass balance (Eq. (2)) and reaction
flux bounds (Eqs. 3 and 4). For a given production network, the phe-
notypic space can be illustrated by the gray area that is projected onto
the two-dimensional space spanned by product synthesis and growth
rates (Fig. 2).

2.2.2. Design variables
In our formulation for modular cell engineering, we introduced two

design variables – binary reaction deletions (yj) inherent to the modular
cell and endogenous module-specific reaction insertions (zjk) (Eq. (4)).
These variables can be experimentally manipulated to constrain the
desirable phenotypes of production strains as shown in Fig. 2. Specifi-
cally, yj =0 if reaction j is deleted from the modular cell; otherwise,
yj =1. Deleting metabolic reactions removes undesired functional
states of the network and leaves those with high design objectives.
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Likewise, zjk =1 if reaction j is present in the production network k;
otherwise, zjk =0. It should be noted that the endogenous module-
specific reactions are removed from the parent network (Eq. (5)) but are
added back to a specific production module to enhance the compat-
ibility of a modular cell, i.e., the number of products that are coupled
with a modular cell. Even though both endogenous and heterologous
module reactions belong to a module, they are different. For example, a
modular cell, whose endogenous alcohol dehydrogenase reaction is
removed from the parent network, can only be combined with the
production modules to synthesize ethanol-derived products (e.g. ethyl
butyrate) if the alcohol dehydrogenase reaction is added back to the
target production modules. The maximum number of reaction deletions
(α) and module-specific reaction insertions (βk) are user-defined para-
meters (Eqs. 6 and 7).

2.2.3. Design objectives
To generalize ModCell2 design, we allow three different types of

design objectives (fk, Eq. (1)) that determine production phenotypes for
each production network. Depending on the application, a phenotype
can be designed to be weak coupling (wGCP), strong coupling (sGCP),
and/or non-growth production (NGP) (Fig. 2). The constrained phe-
notypic spaces based on these design objectives are shown in color; any
point within these spaces is a feasible physiological state of the cell that
can be represented by a metabolic flux distribution. The wGCP design
seeks to achieve a high product rate at maximum growth rate (Fig. 2A).
The wGCP design objective, fk

wGCP (∈ [0, 1]), is calculated as follows:

=f
v

vk
wGCP Pk

µ

Pmaxk
µ (8)

where vPk
µ is the minimum synthesis rate of the target product P at the

maximum growth rate for production network k and vPmaxk
µ is the

maximum synthesis rate of P (Supplementary File S1). This wGCP de-
sign formulation is equivalent to RobustKnock (Tepper and Shlomi,
2010) or OptKnock with a tilted objective function (Burgard et al.,
2003; Feist et al., 2010; Yang et al., 2011). In Eq. (8), fk

wGCP is scaled
from 0 to 1 for proper comparison among products. The wGCP design is
appropriate for applications where growth rate is not limited by the
nutrients, and the product is formed during the growth phase. The sGCP
design seeks to achieve a high product rate not only at optimal growth
rate but also during non-growth phase (Fig. 2B). The sGCP design ob-
jective, fk

sGCP (∈ [0, 1]), is calculated as follows:
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where vPk
µ and vP k

µ
max are the minimum and maximum product forma-

tion rates for production network k in the stationary phase, respectively
(Supplementary File S1). The sGCP design objective is comparable to
the one implemented in MODCELL (Trinh et al., 2015). Different from
wGCP, sGCP requires high product synthesis rate for any growth phase.
However, the additional constraint of optimal product synthesis during
the stationary phase requires more genetic manipulations or specific
experimental conditions (e.g., anaerobic growth condition, supply of
intermediate metabolites). Both wGCP and sGCP designs enable fast
growth selection to attain the optimum product rates by adaptive la-
boratory evolution (Trinh and Srienc, 2009; Fong et al., 2005). The NGP
design aims to maximize the minimum product rate during the non-
growth phase by eliminating carbon fluxes directed to biomass synth-
esis (Fig. 2C). The NGP design objective, fk

NGP (∈ [0, 1]), is calculated as
follows:

Features
Conventional

strain engineering
Modular cell 
engineering

Parent strain

Modular cell Absent

Exchangeable
modules

1

Optimal 
production strains

Design-build-test 
cycle

Repeated for every 
new product

One time for 
many products

Optimized common 
production phenotypes

…
Module1 Module 2 Module 

Fig. 1. Comparison between the conventional
single-product strain design and modular cell
engineering. In the conventional approach,
each target product requires to go through the
iterative optimization cycle. The modular cell
engineering approach exploits common phe-
notypes associated with high product titers,
rates, and yields; and hence, the strain opti-
mization cycle only needs to be performed
once for multiple products, which helps reduce
the cost and time of strain development.

Fig. 2. Graphical representation of phenotypic spaces for different strain design objectives including (A) weak growth coupling (wGCP), (B) strong growth coupling
(sGCP), and (C) no-growth production (NGP). Any point within the delimited polygon represents a metabolic flux distribution attainable by the organism. vPk

µ is the
minimum product formation rate at the maximum growth rate for production network k, and vPmax k

µ is the maximum product secretion rate attainable. vPk
µ and vPmax k

µ

are the minimum and maximum product formation rates for production network k during the stationary phase, respectively.
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while the NGP design is not suitable for growth selection, it can be
derived from a wGCP (or sGCP) design by imposing additional genetic
modifications. Practically, NGP design strains can be activated during
cell culturing using a regulatory genetic circuit to switch between
production phases.

2.2.4. Design solutions
Optimal solutions for Eq. (1) are a Pareto set (PS) that correspond to

design variables, including reaction deletions (yj) and endogenous
module-specific reaction insertions (zjk). Each solution constitutes a
design of a modular cell:

PS :x t F t F x{ , ( ) ( )} (11)

Here, F t F x( ) ( ) means F(t) dominates F(x) if and only if t xf ( ) f ( )i i for
all i, and F t( ) differs from F x( ) in at least one entry. The feasible space
of design variables, , is defined by the problem constraints (Eqs. 2–7,
also see Supplementary File S1). Phenotypes of modular cells will be the
image of the Pareto set in the objective space, known as the Pareto front
(PF):

PF PSF x x{ ( ): } (12)

For the multiobjective strain design framework, the input para-
meters include α (Eqn. 6), βk (Eqn. 7), and the production networks as
input metabolic models. Each model contains a production module to
produce one target chemical. The output is a Pareto set (genetic mod-
ifications) and its respective Pareto front (desirable production phe-
notypes). For a special case with no trade-off among the design objec-
tives, an optimal solution, named a utopia point, exists where each
objective achieves its maximum value. The multiobjective strain design
formulation presented is general and can be applied to design modular
cells for any organism.

2.3. Algorithm and implementation

2.3.1. ModCell2 algorithm
To solve the multiobjective optimization problem for modular cell

engineering, we used multiobjective evolutionary algorithms (MOEAs)
(Coello Coello, 2002). MOEAs were selected because they can effi-
ciently handle linear and non-linear problems and do not require pre-
ferential specification of design objectives (Marler and Arora, 2004).
MOEAs start by randomly generating a population of individuals (a
vector of design variables), each of which is mapped to a design ob-
jective vector (i.e., a fitness vector). In ModCell2, the objective values
of an individual are calculated by solving the linear programming
problems for each production network (Supplementary File S1). Next,
individuals are shuffled to generate an offspring, from which the most
fit individuals are kept. This process was repeated until the termination
criteria was reached, for instance, either the solutions cannot be further
improved or the simulation time limit is reached.

2.3.2. ModCell2 implementation
To streamline the modular cell design, we developed the ModCell2

software package based on three core classes (Fig. S1 in Supplementary
File S2). The Prodnet class parses and pre-processes production network
models, and computes production phenotypes. The MCdesign class
serves as an interface between the MOEA optimization method and
metabolic models. Finally, the ResAnalysis class loads the Pareto set
computed by MCdesign and identifies the most promising modular cell
designs.

The code was written in MATLAB 2017b (The Mathworks Inc.)
using the function gamultiobj() from the MATLAB Optimization
Toolbox that implements the NSGA-II algorithm (Deb et al., 2002) to
solve the multiobjective optimization problem. To implement the

MOEA algorithm in MATLAB, we used default parameters except the
population size. We set the empirically conservative values of popula-
tion sizes of 200 and 400 for core and genome-scale model to converge
in 2 h and 15 h of simulation time, respectively, using one Beacon node
of the ACF supercomputer (2× 8-core Intel® Xeon® E5–2670 pro-
cessors, see https://www.nics.tennessee.edu/). Detailed description of
MOEA implementation (i.e. solver, penalty objective function, design
objective computation, termination criteria, genetic operators, para-
meters, alternative solution, and algorithm optimization) is provided in
Supplementary File S1. The solution and analysis methods were par-
allelized using the MATLAB Parallel Computing Toolbox. The linear
programs to calculate metabolic fluxes were solved using the GNU
Linear Programming Kit (GLPK). The COBRA toolbox (Schellenberger
et al., 2011; Heirendt et al., 2017) and F2C2 0.95b (Larhlimi et al.,
2012) were also used for COBRA model preprocessing and manipula-
tion.

2.3.3. Metabolic models
In our study, we used three parent models including i) a small

metabolic network to illustrate the modular cell design concept (Trinh
et al., 2015), ii) a core metabolic network of Escherichia coli to compare
the performance of ModCell2 with respect to the conventional single-
product strain design strategy and the first-generation modular cell
design platform MODCELL (Trinh et al., 2015), and iii) a genome-scale
metabolic network of E. coli (i.e., iML1515 (Monk et al., 2017)) for
biosynthesis of a library of endogenous and heterologous metabolites,
including 4 organic acids, 6 alcohols, and 10 esters (Figs. S2 in
Supplementary File S2) (Rodriguez et al., 2014; Trinh et al., 2008;
Layton and Trinh, 2014; Shen et al., 2011; Atsumi et al., 2008; Tseng
and Prather, 2012; Yim et al., 2011; Akita et al., 2016; Niu et al., 2014;
Yu et al., 2014).

2.3.4. Simulation protocols
Anaerobic conditions were imposed by setting oxygen exchange

fluxes to be 0, and the glucose uptake rate was constrained to be at most
10mmol/gCDW/h, as experimentally observed for E. coli. When using
the genome-scale model iML1515 to simulate wGCP designs, the com-
monly observed fermentative products (acetate, CO2, ethanol, formate,
lactate, succinate) were allowed for secretion as described elsewhere
(von Kamp and Klamt, 2017). For simulation of sGCP and NGP designs,
the glucose uptake rate was fixed (i.e., −10mmol/gCDW/h); other-
wise, the flux is not active during the no-growth phases, resulting in the
product synthesis rate of 0 regardless of genetic manipulations. To
compare ModCell2 with Optknock, we applied the OptKnock algorithm
with a tilted objective function (Maranas and Zomorrodi, 2016) to
generate wGCP designs for each production network, using the open-
source algebraic modeling language Pyomo (Hart et al., 2012). The
MILP problems were solved using CPLEX 12.8.0 with a time limit of
10,000 s for each product.

ModCell2 is provided as an open-source software package and is
freely available for academic research. The software package and doc-
umentation can be download via either web.utk.edu/~ctrinh or
https://github.com/TrinhLab.

2.4. Analysis methods for design solutions

2.4.1. Compatibility
The compatibility, C of a design is defined as the number of pro-

ducts that are coupled with a modular cell and has objective values
above a specified cutoff value θ. As a default, we set θ=0.6 for the
wGCP and NGP design objectives and θ=0.36 (0.62) for the sGCP
design objective. For example, a wGCP design for 3 products that has
the design objective values of 0.4, 0.9, and 0.6 has a compatibility of 2,
given a cutoff value of θ≥0.6.
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2.4.2. Compatibility difference and loss
Robustness is the ability of a system to maintain its function against

perturbations, and hence is very important of designing biological and
engineered systems (Kitano, 2004). To evaluate the robustness of
modular cell designs, we defined two metrics, the compatibility dif-
ference (CD) and compatibility loss (CL) as follows:

=CD C Cfinal initial (13)

=CL
C C

C
initial final

initial (13′)

where Cinitial and Cfinal are the compatibilities of a modular cell design
before and after a single reaction deletion, respectively. The value
CD> 0 means the modular gains fitness while CD< 0 (or CL∈ (0,1])
means that it loses its fitness. In the analysis, we did not consider es-
sential and blocked reactions for our single-deletion analysis; for in-
stance, there are only 1139 potential reaction deletions in the iML1515
model.

2.4.3. Metabolic switch design
A metabolic switch design is a modular cell that can possess mul-

tiple production phenotypes (i.e., wGCP, sGCP, and NGP), activated by
an environmental stimulus (e.g. metabolites, lights) (Callura et al.,
2012; Levskaya et al., 2005). The metabolic switch design is enforced to
have a set of reaction (gene) deletions in one production phenotype to
be a subset of the other, for instance, {ywGCP} ⊆ {yNGP}, {ywGCP}
⊆ {ysGCP}. The metabolic switch design is beneficial for multiphase
fermentation configurations that enable flexible genetic modification
and implementation. Specifically, the metabolic switch design can ex-
hibit the wGCP phenotype during the growth phase and the NGP (or
sGCP) phenotype during the stationary phase.

3. Results and discussion

3.1. Illustrating ModCell2 for modular cell design of a simplified network

An example parent network, adapted from (Trinh et al., 2015), was
used to illustrate ModCell2 (Fig. 3A). Inputs for the multiobjective
optimization problem include i) three production networks (Fig. 3B),
comprising of one endogenous production module (module 1) and two
heterologous production modules (modules 2 and 3) and ii) design
parameters (Fig. 3C), containing design objective type, maximum
number of deletion reactions ( ), and maximum number of endogenous
module-specific reactions ( k). The output of ModCell2 generated the
Pareto set and the corresponding Pareto front for modular cell designs
(Fig. 3D). The 2-D plots of product yields versus growth rates presented
the feasible phenotypic spaces of the wildtype (gray area) and the de-
signed strain (blue area).

Using various and k values, ModCell2 simulation generated three
wGCP- - k-d, four sGCP- - k-d designs, and three NGP- - k-d designs,
where d is the design solution index (Fig. 3D). For instance, by setting
= 3 and k =0, we found three sGCP designs including sGCP-3-0-1,

sGCP-3-0-2, and sGCP-3-0-3. The first design sGCP-3-0-1 has a com-
patibility of 2 with the design objective values of 0.42 and 0.97 for the
products P2 and P3, respectively. In contrast, the sGCP-3-0-2 and sGCP-
3-0-3 designs have compatibilities of only 1 with the design objectives
of 0.63 for P2 and 0.45 for P1, respectively.

Based on all designs, we can clearly see the trade-offs for optimi-
zation of different products for k =0. However, setting 1k helps
increase the compatibility of a modular cell with different production
modules. In addition, we found that the Pareto front collapses into a
utopia point as seen in the wGCP-1-1-1, sGCP-3-1-1, and NGP-3-1-1
designs. For instance, the modular cell, sGCP-3-1-1, is compatible with
all three products. The three corresponding optimal production strains
can couple growth and product formation during the growth phase.
During the stationary phase, these strains produce the products at

maximum theoretical yields. In theory, a universal modular cell always
exists, provided that enough reaction deletions and endogenous
module-specific reactions are used (Trinh et al., 2015). Construction of
a universal modular cell from a host organism (e.g., E. coli, S. cerevisiae)
using the top-down approach will likely require a large number of ge-
netic modifications, which can be streamlined with the current advance
in genome engineering technologies (Garst et al., 2017; Bao et al.,
2018). Alternatively, a modular cell can also be built from a synthetic
minimal cell using the bottom-up approach, which can be much more
challenging.

3.2. Comparing ModCell2 designs with first-generation MODCELL and
single product designs

3.2.1. ModCell2 can generate more and better designs than the first-
generation modular cell design platform

To evaluate the algorithms and performance of ModCell2, we di-
rectly compared it with MODCELL (Trinh et al., 2015) in two case
studies, using the same core model of E. coli for production of five al-
cohols (ethanol, propanol, isopropanol, butanol, and isobutanol) and 5
derived butyrate esters (ethyl butyrate, propyl butyrate, isopropyl bu-
tyrate, butyl butyrate, and isobutyl butyrate) from glucose (Fig. 4A).

In the first case study, we fixed the endogenous module-specific
reactions for ethanol dehydrogenase (FEM5) and ethanol export reac-
tion (TRA1) for several production modules in ModCell2 to emulate the
same output as MODCELL (Supplementary File S3). The results showed
that ModCell2 generated all the designs with the same sGCP objective
values like MODCELL (Figs. 4B, 4C, 4D) together with other alternative
solutions (Supplementary File S3). Interestingly, ModCell2 only re-
quired 5 and 6 reaction deletions as opposed to 7 and 7 for the sGCP-5-
0-5 and sGCP-5-0-6 designs, respectively. By setting the maximum re-
action deletions to 6, ModCell2 could find better design solutions
with fewer deletion reaction requirement and higher objective values
(Supplementary File S3).

In the second case study, we used the same model configuration but
did not fix FEM5 or TRA1 in any of the modules. By setting = 5 and

= 1k , we found the sGCP-5-1-8 design that is compatible with all
products and achieves objective values identical or very close to the
maximum objective values found in sGCP-5-0-5, sGCP-5-0-6, and sGCP-
5-0-2 (Fig. 4E). The desirable phenotypic spaces can be further con-
strained for many products if is increased from 5 to 6 (Fig. 4F). Re-
markably, by setting = 8 and = 2k , we found a utopia point design,
sGCP-8-2-9, without any trade-off among design objectives (Fig. 4G).
This utopia point design could not be achieved with < 8 regardless of
any k value.

Overall, the results demonstrate that ModCell2 can efficiently
compute the Pareto front of modular cell designs. It can find better
designs with fewer reaction deletion and endogenous module-specific
reaction requirements, improve design objective values, and enhance
compatibility.

3.2.2. ModCell2 can identify designs with more compatibility than
conventional single-product designs

To evaluate if the conventional, single-product design strategy is
suitable for modular cell engineering, we first used OptKnock to gen-
erate wGCP designs for the same 10 target molecules independently
with various allowable reaction deletions ( = …2, 3, , 7). Likewise, we
employed ModCell2 to produce wGCP designs using the same and
various . To directly compare OptKnock and ModCell2 solutions, we
calculated the wGCP design objective values for all products based on
each OptKnock solution (Supplementary File S3). As expected, our re-
sult showed that ModCell2 and OptKnock designs have the same
highest objective values for each product (Fig. 5A). However, several
OptKnock solutions were always dominated by ModCell2 solutions in
all parameter configurations (Fig. 5B). With 4, ModCell2 could
identify wGCP- -1 designs with the maximum compatibility of 10,
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while the best OptKnock designs only achieved the highest compat-
ibility of 5 (Figs. 5C, 5D).

Overall, ModCell2 can generate modular cells compatible with the
maximum number of modules and achieve high objective values.
Single-product designs might not be compatible with a large number of
products, and the solutions might be far from Pareto optimality.

3.3. Exploring emergent features of modular cell design using an E. coli
genome-scale network

3.3.1. Modcell2 can design modular cells using a large-scale metabolic
network

To demonstrate that ModCell2 can be applied for a genome scale
metabolic network, we tested it to generate wGCP designs for 20 target
molecules with = 4 and various k (Supplementary File S4). The
value was chosen because with 4 deletions single-product designs with
objectives above 60% of the theoretical maximum could be identified
(Supplementary File S5). With = 0k , ModCell2 could identify 58
Pareto optimal modular cell designs (Fig. 6A, Supplementary File S4)
with a median and maximum compatibility of 4 and 17, respectively

(Fig. 6D). By analyzing all wGCP-4- k-d designs (257 total for k = 0, 1,
2, and 3), we found that the ethanol and D-lactate production modules
are most compatible with all modular cell designs (Figs. 6A, 6C,
Supplementary File S4). Among reaction deletions, LdhA (86% of de-
signs), Pta (38%), and AdhE (25%) are the most frequent deletion re-
actions (Fig. 6B). This finding is consistent with two comprehensive
surveys of metabolic engineering publications showing that these de-
leted reactions appeared in most of E. coli engineered strains for pro-
duction of fuels and chemicals (Winkler et al., 2015; King et al., 2017).
The result supports the potential use of modular cell engineering to
systematically build modular platform strains.

The model size of metabolic networks affects the solution time as
observed in simulations for the core and genome-scale metabolic
models (Supplementary File S1). However, Modcell2 is scalable for
analyzing large metabolic networks and weakly depends on and k
parameters since we observed solution convergence even for en-
dogenous module and deletion reactions up to at least 3 and 10, re-
spectively, within allowable simulation time (Fig. S4 in Supplementary
File S2).

Fig. 3. Illustration of ModCell2 workflow and analysis including (A) parent model, (B) production modules, (C) design parameters, and (D) simulation output for
Pareto set and Pareto front based on design input.
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3.3.2. ModCell2 designs can capture combinatorial characteristics of
production modules

To evaluate whether ModCell2 could capture the combinatorial
properties among production modules, we analyzed the Pareto front of
wGCP-4-0-d that has a total of 58 designs. Hierarchical clustering of this
Pareto front revealed certain products with similar objective values
across solutions, such as ethyl esters and butyrate esters (Fig. 6A).
These products together were compatible with different modular cells
and exhibited metabolic similarity in their production modules. Thus,
ModCell2 could generate designs that capture the combinatorial prop-
erties useful for modular cell engineering.

3.3.3. ModCell2 can identify highly compatible modular cells
Analysis of compatibility shows that certain modular cells can

couple with production modules that may not exhibit the combinatorial
properties (Fig. 6D). However, there exists a tradeoff between the
number of feasible designs and degree of compatibility. Some modular
cell designs are compatible with up to 17 out of 20 products, for in-
stance, the most compatible design, wGCP-4–0-48, featuring deletions
of ACALD (adhE), ACKr/PTAr (ack, pta), GND (phosphogluconate de-
hydrogenase, gnd) and LDH_D (ldhA) (Supplementary File S4). An al-
ternative design wGCP-4-0-48-alternative was also identified where de-
letion of G6PDH2r (gluose-6-phosphate dehydrogenase, zwf) is replaced

Fig. 4. The 2-D metabolic phenotypic spaces of different sGCP designs using the core metabolic model. (A) Metabolic map, (B) sGCP-5-0-5 design, (C) sGCP-5-0-6
design, (D) sGCP-5-0-2 design, (E) sGCP-5-1-8 design, (F) sGCP-6-1-10 design, and (G) sGCP-8-2-9 design. For each panel, the gray and blue areas correspond to the
phenotypic spaces of the wildtype and the optimal production strain, respectively. In Figs. 4B-4D, the phenotypic spaces are the same between ModCell2 and
MODCELL; however, ModCell2 finds those same designs with fewer deletions. Figs. 4E-4G are results only found by ModCell2 that perform better than those
presented in Figs. 4B-4D. For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.
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by that of GND, the first step in the oxidative pentose phosphate
pathway. The gene deletions in the design wGCP-4-0-48-alternative are a
subset of the modular E. coli strain TCS095, whose modular properties
have recently been validated experimentally (Wilbanks et al., 2017).

To determine if modular cell design is a viable alternative to single-
product design, we also analyzed a potential tradeoff between design
performance and modularity by comparing the maximum value of each
objective across all solutions in the Pareto front and the single-product
design optima. If production modules exhibit competing phenotypes, a
modular cell will not achieve the same performance in all modules as a
single-product design strain. Analysis of the most compatible design
wGCP-4-0-48-alternative showed that it could achieve objectives within
4% of the single-product optima in 14 products and within 10% in 3
products (Fig. 6E). This result indicates that it is feasible to identify
highly compatible modular cell designs without a significant tradeoff
between performance and modularity.

3.3.4. Analysis of potential tradeoff between robustness and modularity can
identify conserved metabolic features

To evaluate the robustness of modular cells, we analyzed the com-
patibility change (CD) of wGCP-4-0 designs with compatibilities of 4 or
greater (Fig. S3 in Supplementary File 2). Remarkably, the result shows
that only 7.5% of the 1139 potential non-essential and non-blocked
reaction deletions were detrimental to the robustness of modular cells
while the large remaining portion did not affect CD values. Out of the
85 reactions whose deletion affected compatibility, only a few appeared
consistently across the designs. For instance, deletion of TPI (triose-
phosphate isomerase, tpi) led to an average compatibility loss of 95%,

inactivating most modular cell designs. Based on flux variability ana-
lysis, TPI must operate in the forward direction by converting glycerone
phosphate (dhap) to glyceraldehyde-3-phosphate (g3p) to drive suffi-
cient flux through glycolysis and hence prevent synthesis of undesired
byproducts (D-lactate or 1,2-propanediol) from dhap. Likewise, dele-
tion of carbon dioxide and water transport and exchange reactions
caused compatibility loss across all designs. Pyruvate carboxylase (PPC)
is an important reaction to channel carbon flux through the Krebs cycle
(Coomes et al., 1985), and hence, deletion of PPC reduces compatibility
in most modular cell designs with an average CL of 43%.

While some reaction deletions are critical for modular cell robust-
ness, others are associated with specific products. For example, deletion
of PDH (pyruvate dehydrogenase complex, lpd/aceEF) removes com-
patibility in all butanol-derived designs, indicating PFL (pyruvate for-
mate lyase, pfl) is not an appropriate route. To make heterologous bu-
tanol-derived molecules under anaerobic conditions, FDH (NADH-
dependent formate dehydrogenase, fdh) is required in butanol-derived
modules where enzymatic reaction pairs of PFL and FDH could sub-
stitute PDH known to be anaerobically inhibited.

Overall, analysis of tradeoff between modularity and robustness can
identify not only the conserved metabolic features of modular cells but
also potential bottlenecks in specific production modules.

3.3.5. Enabling metabolic switch among different design objectives using
ModCell2

The ability to dynamically control growth and production phases
can potentially enhance product titers, rates, and yields. For instance,
two-phase fermentation can be employed where growth phase is

Fig. 5. Comparison of strain design by OptKnock and Modcell2. (A) Correlation between the maximum objective values for each product generated by OptKnock and
the equivalent values attained by ModCell2. For a given maximum number of reaction deletions, each circle corresponds to a product. (B) A comparison between the
Optknock objective vectors with at most 7 reaction deletions and the representative ModCell2 objective vector, wGCP-7-1 which dominates them. Each color circle
represents a pair of dominating wGCP design and dominated OptKnock solution (Supplementary File S3). (C) Maximum compatibility of OptKnock designs (white),
wGCP designs (βk = 0, dark red), wGCP designs (βk = 1, light blue). (D) Compatibility distribution of Optknock (α= 7, white) and wGCP-7-1 (light blue). For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.
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optimized for biomass synthesis and stationary phase for chemical
production (Klamt et al., 2018). Using ModCell2, we investigated the
feasibility to design optimal strains to toggle switch desirable produc-
tion phenotypes.

To design a wGCP→NGP metabolic switch, we first used our re-
ference wGCP design as a parent strain (Fig. 7A) and then employed
ModCell2 to identify the most compatible NGP designs. With 5 addi-
tional deletions, we could find wGCP→NGP designs that encompass
both wGCP and NGP phenotypes, for instance, the sup-NGP-5-0-23 de-
sign featuring deletion of PGI (glucose-6-phosphate isomerase, pgi),
MDH (malate dehydrogenase, mdh), ASPT (L-aspartase, aspT), TKT2
(transketolase, tktB), and ATPS4rpp (ATP synthase, atp) (Fig. 7B). The
deletion reactions in the wGCP→NGP designs appear in both catabolic
(PGI, ATPS4tpp) and anabolic (ASP, TKT2) processes, responsible for
growth disruption and direction of carbon flow to the biosynthesis of
target products.

Likewise, we used ModCell2 to design a wGCP→sGCP metabolic

switch. We identified the most compatible wGCP→sGCP designs with 6
additional deletions, for instance, the sup-sGCP-6-0-39 design featuring
the deletion of MGSA (Methylglyoxal synthase, mgsA), ALCD2x (alcohol
dehydrogenase, adhE), PFL, MDH, FADRx (FAD reductase, fadI), and
GLUDy (NADP+dependent glutamate dehydrogenase, gdhA) (Fig. 7C).
Different from the wGCP→NGP metabolic switch, all deletions in the
wGCP→sGCP designs are involved the elimination of biosynthesis
pathways of undesirable byproducts.

While it is feasible to metabolically switch among different pro-
duction phenotypes, it not only requires more reaction deletions but
also reduces the product compatibility. For instance, the wGCP→sGCP
and wGCP→NGP designs are only compatible with 5 products while the
wGCP parent design have a compatibility of 17 out of 20 products with
4 deletions. The main reason is that both wGCP→sGCP and wGCP→
NGP designs must eliminate all possible redundant pathways that result
in biosynthesis of undesirable byproducts.

Fig. 6. (A) Pareto front of wGCP-4-0-d. The columns correspond to different designs labeled by their design index, d, where the rows correspond to different products. (B)
Frequency of the top deletion reactions. (C) Product compatibility distribution across designs. (D) Compatibility distribution of Pareto optimal designs. (E) Tradeoff between
modularity and performance. The bars correspond to the maximum objective values attainable for each product whereas the blue line represents the objective values of the
wGCP-4-0-48-alternative design. For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.

S. Garcia, C.T. Trinh Metabolic Engineering 51 (2019) 110–120

118



4. Conclusion

In this study, we developed a multiobjective strain design platform
for modular cell engineering. With a new developed algorithm and

computational platform, ModCell2 enables flexible design of modular
cells that can couple with production modules to exhibit desirable
production phenotypes. In comparison to the first-generation strain
design platform, ModCell2 can handle large-scale metabolic networks

Fig. 7. Feasible production phenotypes of (A) wGCP-4-0-48-alternative (blue; a representative, highly-compatible design), (B) wGCP→NGP design (red; sup-NGP-5-0-
23), and (C) the wGCP→sGCP design (green); sup-sGCP-6-0-39. In all of the panels, the feasible production phenotypes of the parent strain are shown in gray;
specifically, the gray areas are referred to the wildtype in Fig. 7A and wGCP design in Figs. 7B and 7C. For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.
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and identify better solutions that require fewer genetic modifications
and exhibit more product compatibility. Different from the conven-
tional single-product strain design, ModCell2 can find solutions that are
Pareto optimal with negligible tradeoffs among modularity, perfor-
mance, and robustness. We envision ModCell2 is a useful tool to im-
plement modular cell engineering and fundamentally study modular
designs in natural and synthetic biological systems.
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