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ABSTRACT: Modular design is key to achieve efficient and
robust systems across engineering disciplines. Modular design
potentially offers advantages to engineer microbial systems for
biocatalysis, bioremediation, and biosensing, overcoming the slow
and costly design−build−test−learn cycles in the conventional cell
engineering approach. These systems consist of a modular
(chassis) cell compatible with exchangeable modules that enable
programmed functions such as overproduction of a desirable
chemical. We previously proposed a multiobjective optimization
framework coupled with metabolic flux models to design modular
cells and solved it using multiobjective evolutionary algorithms.
However, such approach might not achieve solution optimality and
hence limits design options for experimental implementation. In
this study, we developed the goal attainment formulation compatible with optimization algorithms that guarantee solution
optimality. We applied goal attainment to design an Escherichia coli modular cell capable of synthesizing all molecules in a
biochemically diverse library at high yields and rates with only a few genetic manipulations. To elucidate modular organization of the
designed cells, we developed a flux variance clustering (FVC) method by identifying reactions with high flux variance and clustering
them to identify metabolic modules. Using FVC, we identified reaction usage patterns for different modules in the modular cell,
revealing that its broad pathway compatibility is enabled by the natural modularity and flexible flux capacity of endogenous core
metabolism. Overall, this study not only sheds light on modularity in metabolic networks from their topology and metabolic
functions but also presents a useful synthetic biology toolbox to design modular cells with broad applications.
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Microbial metabolism can be engineered to produce a
large space of molecules from renewable and sustain-

able feedstocks.1 Currently, only a handful of fuels and
chemicals out of the many possible molecules offered by nature
are industrially produced by microbial conversion, mainly
because the strain engineering process is too laborious and
expensive.2 To overcome this roadblock and produce a more
diverse range of molecules requires innovative technologies for
rapid and economically competitive strain engineering.1−3 The
principles of modular design that have shown great success in
traditional engineering disciplines can be adapted to construct
modular cell biocatalysts in a plug-and-play fashion with
minimal strain design−build−test−learn cycles.4

Multiobjective optimization is a powerful mathematical
framework widely applied in engineering disciplines to tackle
the optimal design of a complex system with multiple
conflicting objectives.5,6 This framework has recently been
used to design modular systems in conventional engineering7

and to explain the modularity of natural biological systems that
enable cellular robustness and adaptability.8−12 Using multi-

objective optimization, microbial metabolism can be redirected
to generate modular production strains that are systematically
assembled from an engineered modular cell and exchangeable
production modules, where each module synthesizes a target
molecule.13 This modular cell design approach, known as
ModCell2, uses the principles of mass balance and
thermodynamics of biochemical reaction networks to predict
metabolic fluxes upon genetic manipulations.13,14 Based on
such flux predictions, a multiobjective optimization problem is
then formulated and solved with a multiobjective evolutionary
algorithm (MOEA)15,16 to yield a sample of the Pareto front
(i.e., the set of optimal solutions to the problem with minimal
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trade-offs among objectives) so that a designer can explore
genetic manipulation targets for modular cell engineering.
In this study, we developed ModCell2-MILP, a ModCell2-

based formulation to be compatible with mixed integer linear
programming (MILP) algorithms. This framework presents a
significant advancement from ModCell2 in solving the
multiobjective strain design problem for modular cell
engineering. Specifically, ModCell2-MILP is developed to (i)
guarantee optimal solutions, (ii) completely enumerate
alternative solutions of a target design, and (iii) describe
practical engineering goals more directly (e.g., design of a
modular cell where all production modules lead to a product
yield above 50% of the theoretical maximum). By applying
ModCell2-MILP to analyze the genome-scale metabolic
network of Escherichia coli, we could identify a universal

modular cell that is compatible with a diverse class of
production modules. To gain a mechanistic view into the
modular organization of metabolic networks, we developed a
flux variance clustering (FVC) method by identifying reactions
with high flux variance and clustering them to identify
metabolic modules. Using FVC, we found that broad pathway
compatibility of the modular cell is facilitated by its natural
modularity and flexible flux capacity of endogenous core
metabolism. We anticipate ModCell2-MILP and FVC can
serve as powerful tools for not only elucidating natural and
synthetic metabolic modularity but also rationally designing
modular cells for broad biotechnological applications in
biocatalysis, bioremediation, and biosensing.

Figure 1. Principles of modular cell design. (a) Modular chassis cell. (b) Interfaces. (c) Exchangeable production modules. (d) Production strains.
A modular cell is designed to provide the necessary precursors for biosynthesis pathway modules that are independently assembled with the
modular cell to generate production strains exhibiting desirable phenotypes. The wGCP phenotype, one of the possible design objectives, enforces
the coupling between the desirable product synthesis rate and the maximum cellular growth rate.
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■ MATERIALS AND METHODS
Modular Cell Design. Design Principles. ModCell design

enables rapid assembly of production strains with desirable
phenotypes from a modular (chassis) cell.4,13,17 More
specifically, a modular cell contains core metabolic pathways
shared among exchangeable production modules (Figure 1a).
The chassis interfaces with the modules through enzymatic and
genetic synthesis machinery and precursor metabolites (Figure
1b). Modules contain auxiliary regulatory and metabolic
pathways (Figure 1c) that enable a desired phenotype for
optimal biosynthesis of a target molecule, for example, weak
growth coupled to product formation (wGCP), where a positive
correlation between growth and product synthesis rates is
enforced (Figure 1d).13,18,19 The wGCP phenotype is useful
because it enables rapid pathway optimization by adaptive
laboratory evolution20,21 or high-throughput genetic library
selection.22 The design objective phenotypes are determined
from cellular growth and product synthesis rates based on
steady-state stoichiometric metabolic models.23 A modular cell
is said to be compatible with a module if the design objective of
the resulting production strain is above a specified threshold.
The different biochemical natures of production modules to
synthesize target metabolites can make the design objectives
compete with each other and also the cellular objectives (e.g.,
biomass formation) compete with the engineering objectives
(e.g., product formation), turning the ModCell design problem
into a multiobjective and multilevel optimization problem.
Multiobjective Optimization Formulation. The modular

cell design problem is stated as a general multiobjective
optimization problem of the form

= ∈x x x x x Xf f fFmax ( ) ( ( ), ( ), ..., ( )) s. t.
x k1 2

T
(1)

where f k is the desirable phenotype for production module k, x
are the problem variables including binary design variables
corresponding to genetic manipulations, and X is the set of
constraints including mass balance of metabolism. Optimal
solutions for the multiobjective optimization problem 1 are
defined using the concept of domination: A vector a = (a1, ...,
aK)

T dominates another vector b = (b1, ..., bK)
T, denoted as a ≺

b, if and only if ai ≥ bi ∀i ∈ {1, 2, ..., K} and ai ≠ bi for at least
one i. A feasible solution x* ∈ X of the multiobjective
optimization problem is called a Pareto optimal solution if and
only if there does not exist a vector x′ ∈ X such that F(x′) ≺
F(x*). The set of all Pareto optimal solutions is called the
Pareto set:

≔ { ∈ ∃̷ ′ ∈ ′ ≺ }X X F FPS x x x x: , ( ) ( ) (2)

The projection of the Pareto set in the objective space is
denoted as the Pareto front:

≔ { ∈ }FPF x x PS( ): (3)

Different feasible points in PS (i.e., different genetic
manipulations) that map to a single point in PF (i.e., the
same phenotype) are denoted alternative solutions.
The design variables x in ModCell2 correspond to chassis

reaction deletions, which remove undesired metabolic
functions, and module reaction insertions, which allow
identification of optimal module configurations without
extensive prior knowledge of the product synthesis pathway.
The constraint set X is comprised of two types: (i) flux
simulation constraints (e.g., mass balance, reaction reversi-
bility, and flux bound) that allow prediction of fluxes in the

design objectives upon genetic manipulations and (ii)
implementation constraints that involve the maximum number
of reaction deletions in the chassis (denoted by α) and the
maximum number of module reaction insertions per module
(denoted by β). The following sections describe the problem
formulation in detail using the definitions compiled in the
Definitions section.

Design Objectives. Design objectives, f k, that correspond to
specific metabolic phenotypes within the space of feasible
steady-state reaction fluxes, Πkm, of production network k (i.e.,
the combination of the chassis network with the production
module k) and metabolic state m are defined as follows:

Π ≔ { ∈e v( ) :km jk jkm (4)

∑ = ∀ ∈
∈

S v i0
j

ijk jkm k
k (5)

≤ ≤ ∀ ∈ }l e v e u jjkm jk jkm jk jkm k (6)

Here, vjkm is the rate (mmol/(g CDW/h)) of reaction j in
production network k under metabolic state m. Constraint 5
enforces mass balance for all metabolites according to reaction
stoichiometry given by the stoichiometric coefficients Sijk, and
constraint 6 imposes bounds, ljkm and ujkm, for the metabolic
fluxes according to reaction reversibility, experimentally
measured values, and specified metabolic state. The binary
variable, ejk, is used in the overall optimization problem to
indicate whether reaction j in production network k is removed
and thus cannot carry any flux. Two metabolic states m are
considered, growth and nongrowth, denoted μ and μ̅,
respectively. These states are differentiated by their flux
bounds, ljkm and ujkm. For growth state, the lower bound of the
biomass formation reaction that represents cell division, νXkm,
is set to a minimum value of γ, that is, lXkμ = γ (∀ ∈k ),
while there is no upper limit to growth, that is, uXkμ = ∞
(∀ ∈k ). On the other hand, for the nongrowth state both
bounds are set to 0, that is, lXkμ̅ = 0 and uXkμ̅ = 0 (∀ ∈k ).
Given the feasible metabolic flux space, Πkm, the following

design objectives, based on the product synthesis rate reaction,
vPkm, are of interest:

= ∈ [ ] ∀ ∈μ

μ
f

v

v
k0, 1 ,k

Pk

Pk

wGCP
max

(7)

= + ∈ [ + ]

∀ ∈

μ
μ

μ
μ

μ

μ
μ μ̅

̅

̅
̅f b

v

v
b

v

v
b b

k

0, ,k
Pk

Pk

Pk

Pk

lsGCP
max max

(8)

ν
= ∈ [ ] ∀ ∈μ

μ

̅

̅

f
v

k0, 1 ,k
Pk

Pk

NGP
max

(9)

The product synthesis fluxes, including vPkμ, vPkμ
max, vPkμ̅, and vPkμ̅

max,
are computed by solving the following linear programming
problems:

Π∈ { − ϵ ∈ }μ μ μ μ μv v v v earg max : ( )Pk Xk Pk k k jk (10)

Π∈ { ∈ = ∀ ∈ }μ μ μ μv v v e jarg max : ( 1, )Pk Pk k k jk k
max

(11)

Π∈ { ∈ }μ μ μ μ̅ ̅ ̅ ̅v v v earg min : ( )Pk Pk k k jk (12)

Π∈ { ∈ = ∀ ∈ }μ μ μ μ̅ ̅ ̅ ̅v v v e jarg max : ( 1, )Pk Pk k k jk k
max

(13)
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The maximum product synthesis fluxes 11 and 13 used for
objective scaling are only calculated once by not using any
deleted reactions (ejk = 1), while the target phenotype fluxes 10
and 12 are functions of the deleted reactions ejk. The design
objectives, wGCP (eq 7), lsGCP (eq 8), and NGP (eq 9), were
previously proposed13 and briefly described here. The weak
growth coupled to product formation objective (wGCP, eq 7)
seeks to maximize the minimum product rate at the maximum
cellular growth, which is accomplished by a titled objective
function24 (eq 10). The linearized strong growth coupled to
product formation (lsGCP, eq 8) objective seeks to maximize
the minimum product synthesis rate during the nongrowth
state, vPkμ̅, in addition to the goal of wGCP. In f k

lsGCP, bμ and bμ̅
are the weights on the growth and nongrowth objectives,
respectively. Finally, the nongrowth production (NGP, eq 9)
objective seeks to optimize the minimum product synthesis
rate during the nongrowth state.
Design Constraints. All the constraints of the modular cell

design problem are gathered as follows:

Ω ≔ { ′ ∈ ∈ { }f y z d w e, , , , , 0, 1 :k j jk jk k jk (14)

∑ α− ≤
∈

y(1 )
j

j
(15)

∑ β≤ ∀ ∈
∈ −

z k
j

jk k
k (16)

≤ − ∀ ∈ − ∈z y j k1 ,jk j k (17)

= ∨ ∀ ∈ ∈d y z j k,jk j jk (18)

′ = ∀ ∈f f w kk k k (19)

= ∧ ∨ ¬ ∀ ∈ ∈e d w w j k( ) ,jk jk k k (20)

≤ ∀ ∈w M f kk k
w

(21)

Ψ∈ ∀ ∈ ∈ }v e k m( ) ,Pkm km jk (22)

Constraints 15−18 are formulated for practical limitations and
features of the modular cell. Specifically, the two variables that
represent design choices for genetic manipulations include (i)
yj, which takes a value of 0 if reaction j is deleted in the chassis
(and consequently in all production networks) and 1
otherwise, and (ii) zjk, which takes a value of 1 if reaction j
is inserted in production network k. The maximum number of
reaction deletions is limited by α through constraint 15, while
the maximum number of module reactions in each module βk
is imposed by 16. Constraint 16 excludes noncandidate
reactions k (since ∈ −j k) so that module reactions
can be fixed (i.e., zjk = 1), according to problem-specific
knowledge. Constraint 17 ensures that only reactions deleted
in the chassis can be inserted back to the modules. Constraint
18 indicates that reaction j is deleted in production network k
if the reaction is deleted in the chassis and not added as a
module reaction. The designer can gradually increase α and βk
to obtain solutions with higher performance.
Constraints 19−21 are introduced for modeling purposes.

The indicator variable, wk, is introduced to allow for certain
production networks to be ignored from the final solution.
Without wk, the whole multiobjective problem becomes
infeasible if a set of deletions renders one of the production
networks infeasible (e.g., its minimum growth rate cannot be

accomplished). However, in practice it is acceptable for some
modules not to work with the chassis cell. If wk = 0, the
objective value f ′k = 0 (eq 19) and reaction deletions do not
apply to network k since ejk = 1 20; if wk = 1, f ′k = f k, and ejk =
djk, where f k is any of the design objectives presented earlier,
eqs 7−9. The use of wk is likely to introduce symmetry (i.e.,
alternative integer solutions with no practical meaning) due to
cases where f k = 0 for a given k while the associated production
network remains feasible, allowing wk to take a value of 0 or 1.
This symmetry is removed by enforcing wk to be 0 if f k = 0, eq
21.
Finally, constraint 22 indicates that the fluxes featured in the

design objectives, vPkm, are contained in the polytope Ψkm. The
space of vPkm is originally defined as an optimization problem,
eqs 10−13, thus representing a nonlinear constraint and
turning the ModCell design problem into a bilevel
optimization problem. These inner optimization problems
are linearized, leading to Ψkm as described in the following
sections.

Linearization of Logical Expressions. The logical ex-
pressions in Ω are replaced by the following linear constraints
in the final problem formulation.
djk = yj ∨ zjk corresponds to

≤ +d y zjk j jk (23)

≥d yjk j (24)

≥d zjk jk (25)

≤ ≤d0 1jk (26)

f k′ = f kwk corresponds to

′ ≤f w Mk k
obj

(27)

′ ≤ − −f f w M(1 )k k k
obj

(28)

′ ≤f fk k (29)

≤ ′ ≤f M0 k
obj

(30)

ejk = (djk ∧ wk) ∨ ¬wk, given rjk = djk ∧ wk, corresponds to

= + −e r w1jk jk k (31)

≤r wjk k (32)

≤r djk jk (33)

≥ + −r w d 1jk k jk (34)

≤ ≤r0 1jk (35)

Linearization of Inner Optimization Problems. Nonlinear
constraints expressed as linear programming problems can be
linearized using basic mathematical programming theory.
Consider the following canonical linear program, with primal
variables x ∈ n and its dual variables u ∈ m:

{ ≤ ≥ }c x Ax b x 0max : ,T (36)

{ ≥ ≥ }b u A u c u 0min : ,T T (37)

The strong duality theorem states that the objective functions
of primal 36 and dual 37 are equal at their optima, cTx* =
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bTy*. Thus, the optimal solution to the primal problem is
described by the following linear constraints:

* ∈ { ∈x x :n (38)

≤Ax b (39)

≥A u cT (40)

=c x b uT T (41)

≥ }x u 0, (42)

Using the strong duality theorem as presented by Maranas
and Zomorrodi,25 the inner optimization problems 22 are
linearized as follows:

Ψ ≔ { ∈e v( ) :km jk jkm (43)

∑ = ∀ ∈
∈

S v i0
j

ijk jkm k
k (44)

≤ ≤ ∀ ∈l e v e u jjkm jk jkm jk jkm k (45)

∑ λ μ μ− + = ∀ ∈
∈

S c j
i

ikm ijk jkm jkm jkm k
l u

k (46)

λ ∈ ∀ ∈iikm k (47)

μ≤ ≤ ∀ ∈M j0 jkm k
l

(48)

μ≤ ≤ ∀ ∈M j0 jkm k
u

(49)

∑ ∑ ∑

∑ ∑

μ μ= − +

− +

∈ ∈ − ∈ −

∈ ∈

c v l u

l p u p

( ) ( )

( ) ( )

j
jkm jkm

j
jkm jkm

j
jkm jkm

j C
jkm jkm

j C
jkm jkm

l u

l u

k k k

(50)

≤ ∀ ∈p e M jjkm jk
l

(51)

μ μ− − ≤ ≤ ∀ ∈e M p j(1 )jkm jk jkm jkm
l l l

(52)

≤ ≤ ∀ ∈p M j0 jkm
l

(53)

≤ ∀ ∈p e M jjkm jk
u

(54)

μ μ− − ≤ ≤ ∀ ∈e M p j(1 )jkm jk jkm jkm
u u u

(55)

≤ ≤ ∀ ∈ }p M j0 jkm
u

(56)

Constraints 44 and 45 correspond to the primal metabolic
network problem and were introduced earlier in Πkm.
Constraints 46−49 correspond to the dual problem. We use
the dual variables, λikm, for the primal mass balance constraints
44, together with μjkm

l and μjkm
u for the primal flux bound

inequalities 45 involving lower and upper reaction bounds,
respectively. Constraints 47−49 emphasize the domain of the
dual variables, with M being a large value above the expected
value of any dual variable. Constraints 50−56 correspond to
the strong duality equality. The left-hand side of the strong
duality equality 50 features the objectives presented in eq 10
for m = μ and eq 12 for m = μ̅. On the right-hand side,
products of binary and continuous variables appear, thus

requiring linearization variables pjkm
l and pjkm

u . Constraints
51−56 ensure that pjkm

l = ejkμjkm
l and pjkm

u = ejkμjkm
u .

Conversion of a Multiobjective Problem into a Single-
Objective Problem. The multiobjective optimization problem
1 is now described entirely in terms of linear constraints
through Ω. However, to make the formulation compatible with
MILP solver algorithms, the objective function vector, f′, must
be expressed as a scalar. To accomplish this without loss of
relevant information, we employed blended and goal attain-
ment formulations.26

Blended Formulation. In the blended formulation, all
objectives are summed as follows:

∑ Ω′ ′ ∈
∈

a f fmax s. t.
k

k k k
(57)

where ak is a scalar weighting factor associated with the design
objective of product k. Different Pareto optimal solutions can
be obtained by varying these weights. The blended formulation
always provides Pareto optimal solutions as long as ak > 0 (∀k
∈ K). In practice, the product priority, ak, can be determined
by criteria such as product market value or “pathway readiness
level” (i.e., certain pathways are easier to engineer than others).

Goal Attainment Formulation. In the goal attainment
problem, a target value is defined for each objective:

∑ δ δ+
∈

+ + − −a amin ( )
k

k k k k
(58)

such that

δ δ′ + − = ∀ ∈+ −f g kk k k k (59)

δ δ ≥ ∀ ∈+ − k, 0k k (60)

Ω′ ∈fk (61)

The problem seeks to minimize the variables, δk
+ and δk

−, that
represent the deficiency and excess of the objective f k′ from the
target value gk, respectively. Weighting parameters ak

+ and ak
−

correspond to different types of discrepancy to be minimized.
In general, when it is important to meet the target value
without exceeding it, we set ak

+ = ak
− = 1; however, when the

design objective is required to be greater or equal than the
target value, we set ak

+ = 1 and ak
− = 0, effectively converting eq

59 into f k′ + δk
+ ≥ gk. Solutions to the goal attainment problem

are not guaranteed to be Pareto optimal, even if all demands gk
are met. To address this issue, the blended problem 57 can be
solved where the objectives are constrained to be equal or
greater than the values found by solving the goal attainment
problem. In practice, the goal attainment formulation
corresponds to the identification of the modular cell compatible
with the largest number of modules. Here, a module k is said to
be compatible if f k′ ≥ gk.

Implementation. Metabolic Models. We used two parent
models from which production networks were built, including
(i) a core metabolic model of E. coli17 to develop the
ModCell2-MILP algorithm and compare with previous
ModCell2 results13 and (ii) the iML1515 genome-scale
metabolic model of E. coli27 for biosynthesis of a library of
endogenous and heterologous metabolites, including 4 organic
acids, 6 alcohols, and 10 esters (Figure S1).28−37 These models
were configured as in the previous ModCell2 study.13 Briefly,
anaerobic conditions were imposed by setting oxygen exchange
fluxes to be 0, and the glucose uptake rate was constrained to
be at most 10 mmol/(g CDW/h). When using the genome-

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.9b00518
ACS Synth. Biol. 2020, 9, 1665−1681

1669

http://pubs.acs.org/doi/suppl/10.1021/acssynbio.9b00518/suppl_file/sb9b00518_si_001.pdf
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.9b00518?ref=pdf


scale model iML1515 to simulate wGCP designs, only the
commonly observed fermentative products (acetate, CO2,
ethanol, formate, lactate, succinate) were allowed for secretion
as described elsewhere.38

ModCell2-MILP Simulations. ModCell2-MILP was imple-
mented using Pyomo,39 an algebraic modeling language
embedded in the Python programming language. All
simulations were performed on a computer with an Intel
Core i7-3770 processor, 32 GB of random access memory, and
the Arch Linux operative system. The implementation and
scripts used to generate the results of this manuscript are
available as part of the ModCell2 package via Supporting
Information 2 and https://github.com/trinhlab/modcell2.
Optimization Solver Configuration. The Pyomo39 imple-

mentation of ModCell2-MILP was solved with IBM Ilog Cplex
12.8.0. To avoid incorrect solutions associated with numerical
issues the following Cplex parameters were changed from their
default values: (i) numerical emphasis was set to “true”, (ii)
integrality tolerance was lowered to 10−7, and (iii) the MIP pool
relative gap was increased to 10−4 for enumerating alternative
solutions. Alternative solutions were enumerated using the
Cplex “populate” procedure.
Analysis methods. Reference Flux Distribution. The

reference flux distribution,
*

| * |

v

v
jk

Sk
, is determined by solving the

following quadratic program based on the parsimonious
enzyme usage hypothesis:40,41

∑
∈

vmin
v j

jk
2

jk
k (62)
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∑ = ∀ ∈
∈

S v i0
j

ijk jkm k
k (63)

≤ ≤ ∀ ∈l v u jjk jk jk k (64)

=v MaxDesignBioXk (65)

Constraint 63 corresponds to mass balance for the metabolic
network. Constraint 64 corresponds to reaction bounds,
including reaction deletions found in the modular cell design
problem. Constraint 65 fixes the biomass formation rate, vXk, to
the maximum reachable by the design. This value (MaxDe-
signBio) is obtained by maximizing vXk subject to eqs 63 and

64. The reference flux distribution
*

| * |

v

v
jk

Sk
represents the desired

metabolic state of a wGCP designed production network. This
distribution, if feasible, is unique because the convex
optimization problem is formulated with a positive definite
quadratic objective function (see Theorem 16.4 in Nocedal
and Wright42).
Flux Variance Clustering. Flux variance clustering (FVC)

seeks to identify and group reactions that exhibit high flux
changes under different conditions. Reactions with high flux
variance can be considered as metabolic interfaces between
core metabolic processes and pathway modules. In our study,
each condition corresponds to a different product synthesis
phenotype. FVC implementation entails three steps. First, flux
distributions are simulated for each condition and standard
deviations for each reaction are calculated. Then, a standard
deviation threshold is set to select the reactions with highest
flux changes across conditions. Finally, these selected reactions
are clustered to identify patterns that repeat under specific

conditions. The filtering threshold is set to capture the top
reactions with the most change while maintaining a sufficiently
small list that is biologically meaningful. In our study, we chose
an ad hoc value that captures well-known reactions in E. coli
central metabolism. To cluster the selected reactions, only flux
magnitudes, not directionality, were considered in our study.
Further, each reaction flux was normalized by the maximum
value of that same reaction across all production networks.
Clustering was performed using the method clustermap() with
default clustering-related parameters from the Python library
Seaborn 0.9.

Flux Sampling. To determine an ensemble of flux
distributions for a production network, we used the ACHR
algorithm43 in the COBRA toolbox.44 Constraints for flux
sampling simulation include the reaction deletions and module
reactions found in the ModCell design problem solution, a
fixed substrate uptake rate of −10 mmol glucose/(g CDW/h),
and a minimum product synthesis flux of 50% of its maximum
value.

Metabolic Map Drawing. Drawings of metabolic map were
performed using the Escher45 tool (https://escher.github.io)
that produces svg files. Coloring, highlighting candidate
reactions, and other systematic adjustments of metabolic
maps were done with the Python-based lxml module.
Additional editing for visual enhancement was done with the
Inkscape software.

■ RESULTS AND DISCUSSION
Performance and Solution Time Optimization of

ModCell2-MILP. ModCell2-MILP Not Only Can Reproduce
the Results of the Original ModCell2 Formulation but Also
Can Find More Alternative Solutions. To evaluate ModCell2-
MILP, we compared its performance with the previously
developed ModCell2 platform13 that solves the optimization
problem with multiobjective evolutionary algorithms
(MOEAs). As a basis of comparison, we used the same E.
coli core metabolic model, maximum number of deletion
reactions α, and maximum number of module reactions βk for
both ModCell2 and ModCell2-MILP. Due to fundamental
differences in problem formulations for MOEA and MILP, we
used the lsGCP design objective for ModCell2-MILP with
multiple weighting factors, ak, specifically selected to reproduce
previous results, in the blended formulation and the sGCP
design objective for ModCell2 (Supporting Information 3).
The results showed that ModCell2-MILP could generate the
same Pareto optimal designs like ModCell2. In addition,
ModCell2-MILP enumerated a larger number of alternative
solutions than ModCell2. For example, the design named
sGCP-5-0-6 generated by ModCell2 had 3 alternative solutions,
while ModCell2-MILP found 8 alternative solutions. By
increasing α to 8 and β to 2, we could identify a utopia
design (i.e., one solution with the maximum value for all
objectives) with 192 alternative solutions, expanding the
possibilities for experimental implementation.

Tuning MILP Formulations Significantly Improves Sol-
ution Times.We considered three techniques that can improve
solution times of ModCell2-MILP:

(i) Fixing the network feasibility indicator wk. If all modules
are expected to be compatible with a final ModCell
design (i.e., > ∀ ∈f k0,k ), wk is set to be 1 for all

∈k to avoid computational efforts in finding
nonoptimal feasible solutions.
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(ii) Flux bound tightening. Constraints of the form ejkmljkm ≤
vjkm ≤ ejkmujkm are known to result in weak linear
relaxations, that is, feasible values of vjkm are far from
their bounds ljkm and ujkm. To tighten the formulation by
making continuous relaxations closer to the feasible
integer solution, smaller values of ujkm and ljkm are
determined by solving a series of linear programs that
maximize and minimize each flux vjkm in the parent
production networks Π = ∀ ∈e j( 1, )km jk k .

(iii) Benders decomposition. ModCell2-MILP has a separa-
ble structure compatible with Benders decomposi-
tion46,47 that creates a master problem, using binary
variables and associated constraints 15−21, and
subproblems for each production network Ψkm(ejk)
with fixed binary variables. This decomposition
implementation is automatically done by Cplex 12.8.

We evaluated these three techniques for tuning MILP
formulations and used the core E. coli model13 for the
benchmark study. The results showed that flux bound
tightening, fixed wk, and Benders decomposition could reduce
the solution time to find solutions by 50%, 80%, and 95%,
respectively (Table 1). By combining these techniques, the

solution time was shortened by 96% from 63.3 to 2.8 s. In
subsequent studies, we used these three tuning techniques to
solve the ModCell design problem unless otherwise noted.
Choice of Design Parameters Affect Solution Time. In

designing a modular cell with ModCell2-MILP, the designer
needs to specify the formulation type (i.e., blended or goal
attainment formulation), the target phenotype (e.g., wGCP,
lsGCP, and NGP), and the limits of deletion reactions (α) and
module-specific reactions (βk). We evaluated the impact of
these parameters on solution time using the E. coli core model
(Figure 2). Regardless of the formulation type, increasing α
and β led to harder problems and hence required more
solution time due to the exponentially increasing number of
feasible solutions as expected. The goal attainment formulation
took longer time to solve for the lsGCP and NGP design
objectives, but about the same time for the wGCP design
objective. Interestingly, the overall difficulty of wGCP is higher
than that of lsGCP in both the blended and goal attainment
formulations, despite lsGCP having approximately twice the
number of constraints. Furthermore, the NGP design objective
could be solved most quickly, likely due to the narrower design
space associated with the no-growth associated production of
target metabolites.

Design of a Universal Modular Cell for a Genome-
Scale Metabolic Model of E. coli. Reduction of the
Candidate Reaction Deletion Set Enables ModCell2-MILP to
Find Modular Cell Designs for a Large-Scale Metabolic
Network. Finding genetic modifications toward a desired
phenotype using mathematical optimization for large-scale
metabolic networks is a computationally expensive task, due to
the combinatorial search space spanned by a large number of
reaction deletion candidates in the network.24,48 Preprocessing
of metabolic networks to reduce reaction candidates is not only
critical but also practical for experimental implementation. The
set of reaction candidates in the iML1515 E. coli model27 was
reduced from 2712 to 276 by ModCell2.13 Using this model
and the wGCP objective, an E. coli modular cell was then
identified to be compatible with 17 out of 20 products with
requirement of only 4 reaction deletions.13 Since MOEA
implemented in ModCell2 does not guarantee optimality, here
we aimed to evaluate the capability of ModCell2-MILP for
handling a large-scale metabolic network and identifying the
Pareto optimality and potential alternative solutions.
We applied ModCell2-MILP to analyze the same iML1515

model with a set of 20 products using the same design
parameters (i.e., α and βk) and the blended formulation with
all objective weights ak = 1. The simulation shows that
ModCell2-MILP could not solve the ModCell design problem
to optimality over 2 days of run time, likely due to the large
number of candidate deletion reactions still present in the
genome-scale model. Currently the best MILP solution
algorithms do not scale well with parallel computing. In
order to obtain solutions within an acceptable time, the set of
candidate reactions must be further reduced. Since only a small
subset of all metabolic reactions in genome-scale models tend
to be deleted by strain design algorithms,13,24,49 we used a pool
of wGCP designs with α = 4, 5, 6 and β = 0, 1 reported with
ModCell213 to identify relevant deletion candidates. From a
set of 601 designs found by ModCell2, only 33 out of 276
reaction deletion candidates were used at least once. Hence,
these 33 reactions were used to create a new, computationally
tractable set of reaction candidates. This new set contains
reactions mostly from the well-characterized central metabolic
pathways (Figure 3a), while the original set includes reactions
in peripheral pathways that lead to biomass synthesis.
Interestingly, within these 33 reaction candidates, only a few
are used in most designs (Figure 3b), highlighting the
importance of their removal in growth-coupled production
phenotypes. Reactions with high deletion frequencies mainly
occur in high-flux central metabolic pathways (Figure 3c),
closely associated with cellular energetics and carbon
precursors that interface with the production modules (Figure
3d).
Using the reduced reaction deletion candidate set,

ModCell2-MILP could find an optimal solution in ∼30 min
and enumerated all optimal solutions in ∼8 h. All the optimal
solutions found by ModCell2-MILP in this case were in
agreement with those previously found by ModCell2.13 It
should be noted that a reduced deletion candidate set can be
identified for any metabolic model and target products by
using previous designs identified with either ModCell2 or
single-phenotype strain design algorithms.50 This heuristic for
reaction deletion candidate selection might affect design
optimality to the extent that it omits relevant reactions.
However, using a sufficiently informative pool of designs from

Table 1. Solution Time Reduction by Tuning the ModCell2-
MILP Formulationa

feasibility indicator, wk,
fixed

Benders
decomposition

bounds
tightened

solution time
(s)

no no no 63.3 ± 16.9
no no yes 32.5 ± 10.2
no yes no 3.6 ± 0.1
no yes yes 3.4 ± 0.4
yes no no 13.8 ± 2.7
yes no yes 11.9 ± 1.7
yes yes no 2.7 ± 0.3
yes yes yes 2.8 ± 0.1

aFixed network indicator means = ∀ ∈w k1,k . The simulations
were performed in triplicate.
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other strain design algorithms helps minimize the chances of
missing relevant candidates.
ModCell2-MILP Can Identify a Universal Modular Cell

Compatible with All Exchangeable Production Modules.
Based on the computationally tractable reaction deletion
candidate set, we next evaluated whether the goal program-
ming formulation could help identify a universal ModCell
design that is compatible with all modules. By screening for
increasing α and βk, we found that a design with α = 6 and βk =
1 could overcome the performance trade-offs between modules
and hence constitute a universal modular cell that is
compatible with all production networks considered (Figure
4a). Once coupled with a module, each resulting production
strain displays the engineered phenotype with the defined
minimum objective goal of 0.5 (i.e., 50% of the theoretical
maximum product yield attained at the maximum growth rate).
Remarkably, most products surpassed this minimum goal with
yields above 90% of the theoretical maximum values (Figure
4b). All production networks displayed a feasible metabolic
space where an increase in product synthesis rate is needed to
attain faster growth rates (Figure 4c). This designed phenotype
is useful for optimal pathway selection using adaptive
laboratory evolution20,21 or pathway libraries.22

Flexible Metabolic Flux Capacity of E. coli Core
Metabolism Enables the Design of a Universal Modular
Cell. Interface Reactions Responsible for Metabolic Flexi-
bility of a Universal Modular Cell Are Identified by

Comparing Flux Distributions of Production Networks.
The designed universal modular cell (Figure 4) can
theoretically adapt to the conflicting metabolic requirements
of all production modules (Table 2). To gain further insight
into this unique metabolic capability of the modular cell, we
analyzed the simulated reference f lux distributions of each
production network using the flux variance clustering (FVC)
analysis (Materials and Methods). Reactions with the highest
flux changes across the production networks are likely critical
for the proper operation of the universal modular cell and
might present potential bottlenecks. Such reactions were
identified by filtering their reference flux standard deviation
calculated across production networks with an ad hoc threshold
of 0.2 (mol/substrate mol). Over 90% of the 535 active
reactions, each of which carries a nonzero flux in at least one
production network, had standard deviation values below the
threshold, indicating highly conserved metabolic core pathways
among production networks. Only 9.5% of the active reactions
presented a standard deviation magnitude above the threshold
(Figure 5a).
In our case study of designing a universal modular cell

compatible with all 20 production modules, unbiased
hierarchical clustering (Figure 5b) revealed the presence of
four interface reaction types in the core metabolism of E. coli
that are activated to fit specific production modules (Figure
5c). In the context of chassis metabolism, an endogenous
module corresponds to a reaction or group of highly coupled

Figure 2. Effect of design parameters on solution time. We examined the target design objective (i.e., wGCP, lsGCP, and NGP) and the limits of
deletion reactions, α, and module reactions, βk, on computation time for solving the ModCell2-MILP problem with the blended (a−c) and goal
attainment (d−f) formulations. A time limit of 500 s, indicated by a red dashed line, was used in all cases, but only reached by certain wGCP and
lsGCP cases with β ≥ 2. The simulations were performed in duplicate.
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reactions that become active to accomplish a certain metabolic
function. The interface reaction classification can be under-
stood in terms of location (i.e., proximity in the metabolic
network) and three metabolic functions. The first function is
the direction of carbon toward general precursor metabolites

including (i) pyruvate and acetyl-CoA captured by acetyl-CoA-
associated modules and (ii) oxaloacetate, succinate, succinyl-
CoA, and α-ketoglutarate captured by TCA-associated
modules. The second function is the direction of carbon
from the precursor metabolites toward secretable molecules,

Figure 3. Metabolic functions of deletion candidate reactions. (a) Subsystem distribution for the original set of 276 candidate reactions in the
iML1515 model. Those subsystems that contain a reaction used in at least one design are colored. (b) Deletion frequency for the reduced set of 33
candidate reactions. The analysis is based on a pool of 601 wGCP designs from different α and β parameters whose Pareto fronts were previously
determined by ModCell2.13 Bar colors indicate membership of these reactions in the subsystems. (c) Metabolic map of core metabolism. Key
metabolites, including precursors for the 20 product modules (i.e., pyruvate, acetyl-CoA, succinyl-CoA, succinate, and α-ketoglutarate), are
highlighted in green. Reactions are colored according to subsytem labels indicated in panel a, reactions colored in light gray do not appear in any of
the subsytems of panel a, and reactions that are candidates for deletion, listed in panel b, are labeled in red. (d) Link between major precursors and
target products where colors are only used to facilitate visualization. Reaction and metabolite abbreviations correspond to BiGG51 identifiers
(http://bigg.ucsd.edu/).
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captured by the upstream and TCA-associated modules. The
third function is the use of ATP- and NADP(H)-dependent
pathways required to maintain homeostasis, captured by the
acetyl-CoA-associated and energetic modules. While these
functions are conceptually separable, their biochemical
manifestation overlaps, that is, specific metabolic reactions or
pathways can simultaneously fulfill several functions.
Interface reactions enable the exchangable production

modules to properly operate with the universal modular cell.
These interface reactions might become potential metabolic
bottlenecks in practice if they cannot satisfy the predicted
fluxes and thus might be critical engineering targets when the
associated production modules are used.
Acetyl-CoA-Associated Interface Reactions. This interface

type contains pyruvate formate lyase (PFL) and pyruvate
dehydrogenase enzyme complex (PDH) reactions that convert
pyruvate to acetyl-CoA. Intuitively, products derived from
pyruvate, such as isobutanol, require a low flux through PFL
and PDH while those derived from acetyl-CoA require a high

flux. Remarkably, the redox states of production strains
determine the ratios of PFL to PDH fluxes. For example, the
ethanol production network has a relatively high flux through
PDH and a low flux through PFL; however, for ethyl acetate,
which has a lower degree of reduction than ethanol (Table 2),
PFL with formate secretion is prioritized over PDH with
NADH generation. Note that our model did not include the
regulatory restriction that PDH is inhibited in E. coli
anaerobically because the function of PDH is equivalent with
the coupling of PFL and heterologous NADH-dependent
formate dehydrogenase (FDH) demonstrated experimentally
for increased butanol33,52 and pentanol35 production.

Upstream Interface Reactions. This module type is formed
by reactions located directly upstream of a secretable
metabolite, often associated with the target production
module, and thus provides the necessary precursor metabo-
lite(s). Such reactions are commonly overexpressed in practice,
for example, the ECOAH1-HACD1-ACACT1r interface
reaction group (comprising 3-hydroxyacyl-CoA dehydratase,

Figure 4. Identification of a universal modular cell compatible with all production modules under the wGCP design phenotype. (a) Goal
programming solutions with increasing α and β values. The goal programming objective value, eq 58, in the y-axis measures the difference between
the performance of production strains and the target goal, that is, ∑ ′ −∈{ ∈ ′ < } f g( )k k f g k k: k k

where the target goal is set to be gk = 0.5. The

parameters α = 6 and β = 1 are sufficient to identify a universal modular cell design meeting the required goal for all production networks. (b)
Comparison between the yield performances of the designed modular production strains and maximum theoretical values. (c) The feasible flux
spaces for the wild-type (gray) and designed modular production strains (crimson). Based on the wGCP design phenotype, to increase growth rate,
each mutant must increase product synthesis rate. The genetic manipulations of this universal modular cell design are indicated in the metabolic
map of Figure 5c.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.9b00518
ACS Synth. Biol. 2020, 9, 1665−1681

1674

https://pubs.acs.org/doi/10.1021/acssynbio.9b00518?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.9b00518?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.9b00518?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.9b00518?fig=fig4&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.9b00518?ref=pdf


3-hydroxyacyl-CoA dehydrogenase, and acetyl-CoA acetyl
transferase) responsible for generating butyryl-CoA and the
ACLS-DHAD1-KARA1 interface reaction group (comprising
of acetolactate synthase, dihydroxy-acid dehydratase, and keto-
acid reductoisomease) responsible for generating isobutyryl-
CoA. These interface reactions can also become active to form
byproducts in certain production networks, for example, the
PTAr-ACKr-ACT2rpp-ACtex interface reaction group (com-
prising phosphate acetyl transferase, acetate kinase, and
cytosolic and periplasmic acetate transport) that not only
carries the highest flux in the acetate production network but
also becomes active in the propanol-associated modules.
TCA-Associated Interface Reactions. This interface type

has the same function as the upstream interface reactions, but
it is localized in the TCA (Krebs) cycle. Several products,
including adipic acid, 1,4-butanediol, propanol, pentanol, and
their associated esters, are derived from the TCA intermediates
and interface with the universal modular cell via the TCA-
derived interface reactions. The SUCOAS-MMM-MMCD
interface reaction group (comprising succinyl-CoA synthetase,
methylmalonyl-CoA mutase, and methylmalonyl-CoA decar-
boxylase) must be activated to convert succinate into succinyl-
CoA and then propanoyl-CoA. Remarkably, two routes are
present to synthesize fumarate from oxaloacetate, including the
conventional MDH-FUM interface reaction group (comprising
malate dehydrogenase and fumarase) that consumes NADH
and the cyclic ASPTA-GLUDY-ASPT interface reaction group
(comprising aspartate transaminase, glutamate dehydrogenase,
and L-aspartase) that consumes NADPH. These NADH/
NADPH cofactors are not interchangeable due to the deletion
of the transhydrogenase THD2pp in the universal modular
cell, so the isobutyl pentanoate and pentyl pentanoate

modules, which are derived from the ASPTA-GLUDY-ASPT
interface reaction group, also have a high NADPH require-
ment. Some production networks, such as pyruvate and
isobutyl acetate, that are not based on the TCA-derived
interface reactions secrete succinate instead of ethanol or
lactate to balance redox by using the PPC-MDH-FUM-
SUCCtex interface reactions (comprising phosphoenolpyru-
vate carboxylase, malate dehydrogenase, fumarase, and
succinate transport).

Energetic Interface Reactions. This interface type primarily
involves NAD(P)-dependent transhydrogenase (THD2pp)
and ATP synthase (ATPS4rpp). Other reactions that allow
coupling of phosphate and electron-transfer cofactors are also
included. The reactions in this module help buffer the diverse
electron and ATP requirements of production networks.
THD2pp is deleted in the chassis but used as a module
reaction in the isobutanol and acetate production networks. In
the case of isobutanol production, transhydrogenase expression
has been demonstrated to increase the synthesis of NADPH
and thus isobutanol.53 Acetate has the smallest degree of
reduction after pyruvate, which results in redox imbalance that
is compensated via formate secretion. In conjunction with
these mechanisms, ATP synthase works in the reverse
direction by hydrolyzing excess ATP. Other production
networks also use ATPS4rpp to eliminate excess ATP as
observed, for example, in the ethyl acetate production network.
This strategy is consistent with ATP wasting approaches
recently demonstrated.54

Comparison between Simulated and Measured Intra-
cellular Fluxes Reveals Flexible Metabolic Flux Capacity of E.
coli to Accommodate the Required Wide Flux Ranges. Flux
analysis of the production networks suggests that the core

Table 2. Overall Production Module Pathway Stoichiometries and Associated Simulated Secretion Fluxes of the Universal
Modular Cell Designa

overall reactionb DoR rp rac rCO2
rfor rsucc

Pyr + NADH → ethanol|AcCoA + 2NADH → ethanol (native) 7.0 0.58 0.01 0.27 0.04
OAA + Glu + 2ATP + 2 NADPH + NADH → AKG + propanol 6.7 0.31 0.36 0.07 0.18
2AcCoA + 4NADH → butanol 6.5 0.59 0.01 0.28 0.04
2Pyr + NADPH + NADH → isobutanol 6.5 0.62 0.31
OAA + Glu + AcCoA + 3NADH + 2ATP + 2NADPH → AKG + pentanol 6.4 0.50 0.21 0.24 0.03
Succ + AKG + ATP + 4 NADH + AcCoA → Ac + 1,4-butanediol 5.5 0.46 0.33 0.17
→ pyruvate 3.0 0.46 −0.16 0.66
Pyr + NADH → D-lactate 3.7 0.91
AcCoA → ATP + acetate 3.5 0.60 0.60 −0.30 0.61
AcCoA + SucCoA + 2NADH → ATP + adipic acid 4.0 0.82 0.05 0.04 0.06
AcCoA + Pyr + NADH → ethyl acetate 5.0 0.63 0.32
AcCoA + OAA + Glu + 2ATP + 2NADPH + NADH → AKG + propyl acetate 5.2 0.41 0.30 0.24
AcCoA + 2Pyr + NADPH + NADH → isobutyl acetate 5.3 0.36 0.02 0.06 0.52
2AcCoA + 3NADH + Pyr → ethyl butanoate 5.3 0.61 0.09 0.23
2AcCoA + 3NADH + OAA + Glu + 2ATP + 2NADPH → AKG + propyl butanoate 5.4 0.68 0.03 0.23 0.04
4AcCoA + 6NADH → butyl butanoate 5.5 0.61 0.14 0.18
2AcCoA + 3NADH + 2pyr + NADPH → isobutyl butanoate 5.5 0.64 0.16 0.16
OAA + Glu + AcCoA + 2NADH + 2ATP + 2NADPH + Pyr → AKG + ethyl pentanoate 5.4 0.68 0.03 0.23 0.04
OAA + Glu + AcCoA + 2NADH + 2ATP + 3NADPH + 2Pyr → AKG + isobutyl pentanoate 5.6 0.67 0.01 0.25 0.03
2OAA + 2Glu + 2AcCoA + 4NADH + 4ATP + 4NADPH → 2AKG + pentyl pentanoate 5.6 0.53 0.22 0.20 0.02

aDoR is the degree of reduction of the final product (mol e−/mol C). Metabolite secretion profiles are determined from the simulated reference
flux distributions (mol C/mol C) of the universal modular cell design. Flux abbreviations: rp, product; rac, acetate; rCO2

, CO2; rfor, formate; rsucc,
succinate. Note that the negative CO2 fluxes in pyruvate and acetate production networks indicate overall CO2 uptake enabled by
phosphoenolpyruvate carboxylase (PPC). bAbbreviations: Pyr, pyruvate; NADH, nicotinamide adenine dinucleotide, reduced; AcCoA, acetyl-
coenzyme A; OAA, oxaloacetic acid; ATP, adenosine 5′-triphosphate; NADPH, nicotinamide adenine dinucleotide phosphate, reduced; AKG, α-
ketoglutaric acid; Succ, succinate; SucCoA, succinyl-coenzyme A.
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metabolic reactions (Figure 5b) require a wide range of fluxes
when coupled with different production modules. To
successfully implement this modular design in practice, we
need to evaluate whether the metabolism of E. coli has the
inherent metabolic flux capacity to accommodate these
required fluxes. We compared the simulated reference flux

distributions with a recent collection of 45 measured metabolic
fluxes55 that are collected from multiple studies across various
conditions (e.g., growth under aerobic and anaerobic
conditions, use of glucose or acetate or pyruvate as a carbon
source) and genotypes (e.g., wild-type E. coli and mutants with
single gene deletions).56−59 Note that while the experimental

Figure 5. Flexible metabolic flux capacity of E. coli metabolism enables the universal modular cell design. (a) Standard deviation of each reaction
flux across production networks. (b) Scaled fluxes of the 51 reactions with standard deviation magnitude above 0.2, excluding proton, water
transport, and exchange reactions. A scaled flux for a reaction is determined by the reference flux distribution value divided by the maximum value
of that reaction across all production networks. Hence, a scaled flux of 0 indicates a given reaction does not carry any flux, and a scaled flux of 1
indicates that this reaction carries the highest flux across production networks. Several columns have multiple reactions, separated by |, since they
carry exactly the same flux. (c) Interface reactions of the universal modular cell. The reactions colored in red are deleted in the chassis but are used
as module reactions in the production networks shown in the adjacent gray boxes. Metabolites in periplasmic and extracellular compartments have
“_p” and “_e”, respectively, suffixed to their abbreviations. Metabolite and reaction abbreviations follow BiGG51 notation. (d) Comparison between
simulated and measured fluxes. The solid lines within the “violins” correspond to samples. The simulated fluxes for the reversible reactions,
including FUM, LDH, MDH, and ACALD, were multiplied by −1 to reflect their most common direction.
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data set provides a flux distribution baseline for wild-type and
relatively small deviations for single gene deletion mutants, we
anticipate that highly engineered strains with more gene
deletions are likely to exhibit wider flux distributions.
Within the reactions present in the 23 groups that constitute

interface reactions (Figure 5b), 8 reactions also appeared in the
experimental data set (Figure 5d). Remarkably, a highly
consistent overlap of flux ranges was observed between the
simulated and measured fluxes for malate dehydrogenase
(MDH), pyruvate dehydrogenase (PDH), acetaldehyde
dehydrogenase (ACALD), fumarase (FUM), and 2-dehydro-
3-deoxy-phosphogluconate aldolase (EDA). For the cases of D-
lactate dehydrogenase (LDH_D) and pyruvate secretion
(EX_pyr_e) that are directly coupled with the biosynthesis
of lactate and pyruvate, respectively, we observed that the
maximum simulated fluxes surpass the measured values,
suggesting that further engineering of wild-type and single-
gene deletion E. coli is needed to attain the required fluxes.
Indeed, previous studies60,61 have been able to redirect
metabolic fluxes in E. coli for yields of lactate and pyruvate
above 75% of the theoretical maximum values by simultaneous
elimination of competing fermentative pathways for biosyn-
thesis of acetate (ΔackA), formate (Δpf lB), and ethanol
(ΔadhE). The only remaining discrepancy between the
simulated and measured fluxes is PPC. Studies not included
in the comparison data set have reported up to 50% more PPC
flux observed under aerobic conditions,62,63 which is still
considerably below several of the simulated fluxes. This result
suggests that PPC can be a potential metabolic bottleneck in
certain production modules. One possible solution is to
include in the affected production modules the heterologous
PPC from Actinobacillus succinogenes, which has been
successfully overexpressed in E. coli for increased succinate
production.64 Additionally, bacterial PPC activity can be
increased by elevating the acetyl-CoA pool.65

Random Sampling of Metabolic Fluxes Confirms the
Narrow Operation Range of Interface Reactions. The
reference flux distributions analyzed so far represent the ideal
metabolic states for each production strain. However, other
metabolic states might also exist. To address this uncertainty,
we performed randomized flux sampling43,44 for each
production network under the constraint that product
synthesis rate must be above 50% of the maximum value.
The results show that the metabolic flux distributions (Figure
S2) for most reactions involved in the interface reactions are
very narrow, except for the two alternative pathways of ethanol
biosynthesis, that is, the endogenous PDH-ACALD-ALCD2x
route comprising pyruvate dehydrogenase, acetaldehyde
dehydrogenase, and alcohol dehydrogenase (Figure 6a) and
the heterologous PYRDC-ALCD2x route comprising pyruvate
decarboxylase and alcohol dehydrogenase. These two pathways
can be used interchangeably in the ethanol production
network, where there is a linear correlation between PYRDC
and PDH fluxes (Figure 6b). Notably, the sampled fluxes
cannot indicate preferential use of the ethanol synthesis route
because the model does not take into account kinetic (kcat, kM)
and regulatory constraints. In summary, even though interface
reactions must have flexible metabolic flux capacities to enable
a universal modular cell to be compatible with various
exchangeable production modules, they must also operate
within a narrow flux range when interfacing with a specific
production module.

■ CONCLUSIONS
In this study, we formulated multiobjective modular strain
design as blended and goal attainment optimization problems.
These problems can be solved by MILP algorithms that
guarantee Pareto optimal solutions, exhaustively search the
space of alternative solutions, and specify design requirements
such as module prioritization or universal compatibility. This

Figure 6. Sampled flux distributions of the ethanol biosynthesis pathways. (a) Probability density function of sampled fluxes for pyruvate
dehydrogenase (PDH) across all production networks. Note that ethanol and ethyl pentanoate have the widest operation range. (b) Sampled
metabolic fluxes of pyruvate decarboxylase (PYRDC) and PDH in the ethanol production network.
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multiobjective strain design approach can be extended with
additional design variables (e.g., up- and down-regulation66 or
reaction insertion from database67) or alternative flux
prediction models68,69 to expand its applications, including
use of exchangeable metabolic modules for bioremediation and
biosensing. In terms of biological significance, the ModCell2-
MILP and FVC methods developed could identify a universal
modular cell that harnesses the inherent modularity and
flexibility of native E. coli metabolism to properly interface with
a variety of biochemically diverse pathways. This universal
design was predicted to display a growth-coupled-to- product-
formation phenotype for all pathways, enabling its use as a
platform for pathway optimization through high-throughput
library selection or adaptation. The feasibility of this universal
design strategy is found to be consistent with experimental
evidence of isolated metabolic engineering strategies toward
target products and measured intracellular flux ranges.
Furthermore, analysis of the metabolic fluxes in this universal
design revealed clusters of reactions in central metabolism,
named interface reactions, that become activated to interact
with specific pathways, providing a mechanistic view into the
modularity of metabolic pathways. In this study, the universal
design developed was limited to a library of 20 molecules in E.
coli because one primary aim was to compare the MILP
solution with the MOEA solution previously presented. Future
studies will use the developed methods to design and
understand modularity for different organisms and a larger
library of product synthesis modules.
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■ DEFINITIONS

Sets

k metabolites in production network k.

k reactions in production network k.
production networks that are derived from a combination
of the parent metabolic network with the metabolic
pathways associated with production modules; the parent
metabolic network is the network of the host strain that is
genetically manipulated to build a modular cell chassis.
metabolic states that correspond to the growth phase,
denoted μ, and the nongrowth or stationary phase,
denoted μ̅.
candidate deletion reaction set; the removal of these
reactions are applied to all production networks,

⊆ ⊆ ∀ ∈k,k
parent .

k nontargeted deletion reaction set in production network k;
this set arises from the use of fixed module reactions zjk in
certain production networks.

Binary Variables
yj reaction deletion indicator that takes a value of 0 if

reaction j is deleted in the chassis and 1 otherwise.
zjk module reaction indicator that takes a value of 1 if reaction

j is added back as module reaction in production network k
and 0 otherwise.

djk reaction activity indicator that takes a value of 0 if reaction
j in production network k might not carry a flux and 0
otherwise; thus djk = yj ∨ zjk. This variable is declared as a
continuous and linear constraints enforce the OR relation
and thus makes the variable binary.

wk production network feasibility indicator that takes a value
of 0 if reaction deletions are ignored and the objective
value is set to 0 for production network k and a value of 1
otherwise.

ejk Reaction activity indicator adjusted to wk that takes the
value of djk if wk = 1 and a value of 1 if wk = 0; thus ejk = (djk
∧ wk) ∨ ¬wk.

rjk Linearization variable, rjk = djk ∨ wk.

Continuous Variables
vjkm flux (mmol/(g CDW/h)) of reaction j from network k at

metabolic state m.
vPkm flux (mmol/(g CDW/h)) of product synthesis reaction

from network k at metabolic state m.
vXkm flux (mmol/(g CDW/h)) of biomass synthesis reaction

from network k at metabolic state m.
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f k general objective function for production network k that
can be represented by f k

wGCP, f k
lsGCP, or f k

NGP.
f k′ objective function adjusted by wk such that f k′ = f k if wk =

1 and f k′ = 0 otherwise.
δk
+ amount required by the objective value f k′ to attain the

target goal gk, that is, δk
+ = gk − f k if f k′ < gk.

δk
− amount that the objective value f k′ surpasses the target

goal gk, that is, δk
− = f k′ − gk if f k′ > gk.

λikm dual variable associated with mass balance constraint of
metabolite i from production network k at growth state
m.

μjkm
l dual variable associated with the lower bound of reaction

j from production network k at growth state m.
μjkm
u dual variable associated with the upper bound of reaction

j from production network k at growth state m.
pjkm
l linearization variable, pjkm

l = ejkμjkm
l .

pjkm
u linearization variable, pjkm

u = ejkμjkm
u .

Parameters
Sijk stoichiometric coefficient of metabolite i in reaction j of

production network k.
ljkm lower bound for reaction j of production network k at

metabolic state m.
ujkm upper bound for reaction j of production network k at

metabolic state m.
γ minimum biomass synthesis rate required for growth

states. Note that in this study a conservative value of
20% of the maximum predicted growth rate of the wild-
type strain was used to generate all results.

α maximum number of deleted reactions in the modular
cell chassis.

βk maximum number of module reactions in production
network k.

ϵ small scalar used for tilting the biomass objective
function, leading to the minimum product rate available
at the maximum growth rate; note that in our study ϵ =
0.0001 was used to generate all results.

bμ, bμ̅ weights on the growth and nongrowth objectives of
f k
lsGCP, respectively; note that in our study bμ = 1 and bμ̅
= 10 were used to generate all results.

ak weighting factor applied to the objective function for
production network k in the blended formulation; note
that in our study = ∀ ∈a k1,k was used unless
otherwise noted.

gk target value for objective f k′ in the goal programming
formulation.

ak
+ weighting factor applied to δk

+, which emphasizes the
importance of objective value f k′ to avoid falling below
the target value gk; note that in our study

= ∀ ∈+a k1,k was used in all cases.
ak
− weighting factor applied to δk

−, which emphasizes the
importance of the objective f k′ to avoid surpassing the
target value gk; note that in our study = ∀ ∈−a k1,k
was chosen everywhere except to determine the
u n i v e r s a l m o d u l a r c e l l d e s i g n , w h e r e

= ∀ ∈−a k0,k was used.
Mw determines the minimum value of f k that allows wk to

not be 0; a value of 10, corresponding to f k ≥ 0.01 for
wk ≠ 0, was used in all cases.

Mobj upper bound for each objective value; note that in our
study a value of 20 was set for all cases.

M upper bound for dual variables; note that in our study a
value of 100 was set for all cases.

■ REFERENCES
(1) Lee, S. Y., Kim, H. U., Chae, T. U., Cho, J. S., Kim, J. W., Shin, J.
H., Kim, D. I., Ko, Y.-S., Jang, W. D., and Jang, Y.-S. (2019) A
comprehensive metabolic map for production of bio-based chemicals.
Nat. Catal. 2, 18.
(2) Nielsen, J., and Keasling, J. D. (2016) Engineering Cellular
Metabolism. Cell 164, 1185−1197.
(3) Trinh, C. T., and Mendoza, B. (2016) Modular cell design for
rapid, efficient strain engineering toward industrialization of biology.
Curr. Opin. Chem. Eng. 14, 18−25.
(4) Garcia, S., and Trinh, C. T. (2019) Modular design:
Implementing proven engineering principles in biotechnology.
Biotechnol. Adv. 37, 107403.
(5) Coello, C. A. C., and Lamont, G. B. (2004) Applications of multi-
objective evolutionary algorithms, Vol. 1, World Scientific, Singapore.
(6) Rangaiah, G. P. (2009) Multi-objective optimization: techniques
and applications in chemical engineering, Vol. 1, World Scientific,
Singapore.
(7) Helmer, R., Yassine, A., and Meier, C. (2010) Systematic module
and interface definition using component design structure matrix. J.
Eng. Des. 21, 647−675.
(8) Kitano, H. (2004) Biological robustness. Nat. Rev. Genet. 5, 826.
(9) Kashtan, N., Noor, E., and Alon, U. (2007) Varying
environments can speed up evolution. Proc. Natl. Acad. Sci. U. S. A.
104, 13711−13716.
(10) Clune, J., Mouret, J.-B., and Lipson, H. (2013) The
evolutionary origins of modularity. Proc. R. Soc. London, Ser. B 280,
20122863.
(11) Shoval, O., Sheftel, H., Shinar, G., Hart, Y., Ramote, O., Mayo,
A., Dekel, E., Kavanagh, K., and Alon, U. (2012) Evolutionary trade-
offs, Pareto optimality, and the geometry of phenotype space. Science
336, 1157.
(12) Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M., and
Sauer, U. (2012) Multidimensional optimality of microbial metabo-
lism. Science 336, 601−604.
(13) Garcia, S., and Trinh, C. T. (2019) Multiobjective strain
design: A framework for modular cell engineering. Metab. Eng. 51,
110.
(14) Garcia, S., and Trinh, C. T. (2019) Comparison of Multi-
Objective Evolutionary Algorithms to Solve the Modular Cell Design
Problem for Novel Biocatalysis. Processes 7, 361.
(15) Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P. N., and
Zhang, Q. (2011) Multiobjective evolutionary algorithms: A survey of
the state of the art. Swarm Evol. Comput. 1, 32−49.
(16) Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002) A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Trans. Evol. Comput. 6, 182−197.
(17) Trinh, C. T., Liu, Y., and Conner, D. J. (2015) Rational design
of efficient modular cells. Metab. Eng. 32, 220−231.
(18) Burgard, A. P., Pharkya, P., and Maranas, C. D. (2003)
Optknock: a bilevel programming framework for identifying gene
knockout strategies for microbial strain optimization. Biotechnol.
Bioeng. 84, 647−657.
(19) Klamt, S., and Mahadevan, R. (2015) On the feasibility of
growth-coupled product synthesis in microbial strains. Metab. Eng. 30,
166−178.
(20) Fong, S. S., Burgard, A. P., Herring, C. D., Knight, E. M.,
Blattner, F. R., Maranas, C. D., and Palsson, B. O. (2005) In silico
design and adaptive evolution of Escherichia coli for production of
lactic acid. Biotechnol. Bioeng. 91, 643−648.
(21) Trinh, C., and Srienc, F. (2009) Metabolic engineering of
Escherichia coli for efficient conversion of glycerol to ethanol. Appl.
Environ. Microbiol. 75, 6696−6705.
(22) Garst, A. D., Bassalo, M. C., Pines, G., Lynch, S. A., Halweg-
Edwards, A. L., Liu, R., Liang, L., Wang, Z., Zeitoun, R., Alexander, W.
G., et al. (2017) Genome-wide mapping of mutations at single-
nucleotide resolution for protein, metabolic and genome engineering.
Nat. Biotechnol. 35, 48.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.9b00518
ACS Synth. Biol. 2020, 9, 1665−1681

1679

https://dx.doi.org/10.1038/s41929-018-0212-4
https://dx.doi.org/10.1038/s41929-018-0212-4
https://dx.doi.org/10.1016/j.cell.2016.02.004
https://dx.doi.org/10.1016/j.cell.2016.02.004
https://dx.doi.org/10.1016/j.coche.2016.07.005
https://dx.doi.org/10.1016/j.coche.2016.07.005
https://dx.doi.org/10.1016/j.biotechadv.2019.06.002
https://dx.doi.org/10.1016/j.biotechadv.2019.06.002
https://dx.doi.org/10.1080/09544820802563226
https://dx.doi.org/10.1080/09544820802563226
https://dx.doi.org/10.1038/nrg1471
https://dx.doi.org/10.1073/pnas.0611630104
https://dx.doi.org/10.1073/pnas.0611630104
https://dx.doi.org/10.1098/rspb.2012.2863
https://dx.doi.org/10.1098/rspb.2012.2863
https://dx.doi.org/10.1126/science.1217405
https://dx.doi.org/10.1126/science.1217405
https://dx.doi.org/10.1126/science.1216882
https://dx.doi.org/10.1126/science.1216882
https://dx.doi.org/10.1016/j.ymben.2018.09.003
https://dx.doi.org/10.1016/j.ymben.2018.09.003
https://dx.doi.org/10.3390/pr7060361
https://dx.doi.org/10.3390/pr7060361
https://dx.doi.org/10.3390/pr7060361
https://dx.doi.org/10.1016/j.swevo.2011.03.001
https://dx.doi.org/10.1016/j.swevo.2011.03.001
https://dx.doi.org/10.1109/4235.996017
https://dx.doi.org/10.1109/4235.996017
https://dx.doi.org/10.1016/j.ymben.2015.10.005
https://dx.doi.org/10.1016/j.ymben.2015.10.005
https://dx.doi.org/10.1002/bit.10803
https://dx.doi.org/10.1002/bit.10803
https://dx.doi.org/10.1016/j.ymben.2015.05.006
https://dx.doi.org/10.1016/j.ymben.2015.05.006
https://dx.doi.org/10.1002/bit.20542
https://dx.doi.org/10.1002/bit.20542
https://dx.doi.org/10.1002/bit.20542
https://dx.doi.org/10.1128/AEM.00670-09
https://dx.doi.org/10.1128/AEM.00670-09
https://dx.doi.org/10.1038/nbt.3718
https://dx.doi.org/10.1038/nbt.3718
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.9b00518?ref=pdf


(23) Palsson, B. Ø. (2015) Systems biology: constraint-based
reconstruction and analysis, Cambridge University Press, United
Kingdom.
(24) Feist, A. M., Zielinski, D. C., Orth, J. D., Schellenberger, J.,
Herrgard, M. J., and Palsson, B. Ø. (2010) Model-driven evaluation of
the production potential for growth-coupled products of Escherichia
coli. Metab. Eng. 12, 173−186.
(25) Maranas, C. D., and Zomorrodi, A. R. (2016) Optimization
Methods in Metabolic Networks, John Wiley & Sons, Hoboken, NJ.
(26) Marler, R. T., and Arora, J. S. (2004) Survey of multi-objective
optimization methods for engineering. Struct. Multidiscip. Optim. 26,
369−395.
(27) Monk, J. M., Lloyd, C. J., Brunk, E., Mih, N., Sastry, A., King,
Z., Takeuchi, R., Nomura, W., Zhang, Z., Mori, H., et al. (2017)
iML1515, a knowledgebase that computes Escherichia coli traits. Nat.
Biotechnol. 35, 904.
(28) Akita, H., Nakashima, N., and Hoshino, T. (2016) Pyruvate
production using engineered Escherichia coli. AMB Express 6, 94.
(29) Atsumi, S., Hanai, T., and Liao, J. C. (2008) Non-fermentative
pathways for synthesis of branched-chain higher alcohols as biofuels.
Nature 451, 86.
(30) Layton, D. S., and Trinh, C. T. (2014) Engineering modular
ester fermentative pathways in Escherichia coli. Metab. Eng. 26, 77−
88.
(31) Niu, D., Tian, K., Prior, B. A., Wang, M., Wang, Z., Lu, F., and
Singh, S. (2014) Highly efficient L-lactate production using
engineered Escherichia coli with dissimilar temperature optima for
L-lactate formation and cell growth. Microb. Cell Fact. 13, 78.
(32) Rodriguez, G. M., Tashiro, Y., and Atsumi, S. (2014)
Expanding ester biosynthesis in Escherichia coli. Nat. Chem. Biol.
10, 259−265.
(33) Shen, C. R., Lan, E. I., Dekishima, Y., Baez, A., Cho, K. M., and
Liao, J. C. (2011) Driving Forces Enable High-Titer Anaerobic 1-
Butanol Synthesis in Escherichia coli. Appl. Environ. Microbiol. 77,
2905−2915.
(34) Trinh, C. T., Unrean, P., and Srienc, F. (2008) Minimal
Escherichia coli Cell for the Most Efficient Production of Ethanol
from Hexoses and Pentoses. Appl. Environ. Microbiol. 74, 3634−3643.
(35) Tseng, H.-C., and Prather, K. L. (2012) Controlled
biosynthesis of odd-chain fuels and chemicals via engineered modular
metabolic pathways. Proc. Natl. Acad. Sci. U. S. A. 109, 17925.
(36) Yim, H., Haselbeck, R., Niu, W., Pujol-Baxley, C., Burgard, A.,
Boldt, J., Khandurina, J., Trawick, J. D., Osterhout, R. E., Stephen, R.,
et al. (2011) Metabolic engineering of Escherichia coli for direct
production of 1, 4-butanediol. Nat. Chem. Biol. 7, 445−452.
(37) Yu, J., Xia, X., Zhong, J., and Qian, Z. (2014) Direct
biosynthesis of adipic acid from a synthetic pathway in recombinant
Escherichia coli. Biotechnol. Bioeng. 111, 2580−2586.
(38) von Kamp, A., and Klamt, S. (2017) Growth-coupled
overproduction is feasible for almost all metabolites in five major
production organisms. Nat. Commun. 8, 15956.
(39) Hart, W. E., Laird, C. D., Watson, J.-P., Woodruff, D. L.,
Hackebeil, G. A., Nicholson, B. L., and Siirola, J. D. (2017) Pyomo -
Optimization Modeling in Python, Springer Optimization and Its
Applications, Vol. 67, Springer International Publishing, Cham.
(40) Machado, D., and Herrgård, M. (2014) Systematic evaluation
of methods for integration of transcriptomic data into constraint-
based models of metabolism. PLoS Comput. Biol. 10, No. e1003580.
(41) Lewis, N. E., Hixson, K. K., Conrad, T. M., Lerman, J. A.,
Charusanti, P., Polpitiya, A. D., Adkins, J. N., Schramm, G., Purvine,
S. O., Lopez-Ferrer, D., et al. (2010) Omic data from evolved E. coli
are consistent with computed optimal growth from genome-scale
models. Mol. Syst. Biol. 6, 390.
(42) Nocedal, J., and Wright, S. (2006) Numerical optimization,
Springer Science & Business Media, New York.
(43) Kaufman, D. E., and Smith, R. L. (1998) Direction choice for
accelerated convergence in hit-and-run sampling. Oper. Res. 46, 84−
95.

(44) Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., Richelle, A.,
Heinken, A., Haraldsdot́tir, H. S., Wachowiak, J., Keating, S. M.,
Vlasov, V., et al. (2019) Creation and analysis of biochemical
constraint-based models using the COBRA Toolbox v. 3.0. Nat.
Protoc. 14, 639−702.
(45) King, Z. A., Drag̈er, A., Ebrahim, A., Sonnenschein, N., Lewis,
N. E., and Palsson, B. O. (2015) Escher: a web application for
building, sharing, and embedding data-rich visualizations of biological
pathways. PLoS Comput. Biol. 11, No. e1004321.
(46) Geoffrion, A. M. (1972) Generalized benders decomposition.
Journal of optimization theory and applications 10, 237−260.
(47) Fischetti, M., Ljubic,́ I., and Sinnl, M. (2016) Benders
decomposition without separability: A computational study for
capacitated facility location problems. Eur. J. Oper. Res. 253, 557−569.
(48) von Kamp, A., and Klamt, S. (2014) Enumeration of Smallest
Intervention Strategies in Genome-Scale Metabolic Networks. PLoS
Comput. Biol. 10, e1003378.
(49) King, Z. A., O’Brien, E. J., Feist, A. M., and Palsson, B. O.
(2017) Literature mining supports a next-generation modeling
approach to predict cellular byproduct secretion. Metab. Eng. 39,
220−227.
(50) Long, M. R., Ong, W. K., and Reed, J. L. (2015) Computational
methods in metabolic engineering for strain design. Curr. Opin.
Biotechnol. 34, 135−141.
(51) King, Z. A., Lu, J., Drag̈er, A., Miller, P., Federowicz, S.,
Lerman, J. A., Ebrahim, A., Palsson, B. O., and Lewis, N. E. (2016)
BiGG Models: A platform for integrating, standardizing and sharing
genome-scale models. Nucleic Acids Res. 44, D515−D522.
(52) Nielsen, D. R., Leonard, E., Yoon, S.-H., Tseng, H.-C., Yuan, C.,
and Prather, K. L. J. (2009) Engineering alternative butanol
production platforms in heterologous bacteria. Metab. Eng. 11,
262−273.
(53) Shi, A., Zhu, X., Lu, J., Zhang, X., and Ma, Y. (2013) Activating
transhydrogenase and NAD kinase in combination for improving
isobutanol production. Metab. Eng. 16, 1−10.
(54) Had̈icke, O., Bettenbrock, K., and Klamt, S. (2015) Enforced
ATP futile cycling increases specific productivity and yield of
anaerobic lactate production in Escherichia coli. Biotechnol. Bioeng.
112, 2195−2199.
(55) Khodayari, A., and Maranas, C. D. (2016) A genome-scale
Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data
for multiple mutant strains. Nat. Commun. 7, 13806.
(56) Ishii, N., Nakahigashi, K., Baba, T., Robert, M., Soga, T., Kanai,
A., Hirasawa, T., Naba, M., Hirai, K., Hoque, A., et al. (2007)
Multiple high-throughput analyses monitor the response of E. coli to
perturbations. Science 316, 593−597.
(57) Kabir, M. M., Ho, P. Y., and Shimizu, K. (2005) Effect of ldhA
gene deletion on the metabolism of Escherichia coli based on gene
expression, enzyme activities, intracellular metabolite concentrations,
and metabolic flux distribution. Biochem. Eng. J. 26, 1−11.
(58) Zhao, J., Baba, T., Mori, H., and Shimizu, K. (2004) Global
metabolic response of Escherichia coli to gnd or zwf gene-knockout,
based on 13 C-labeling experiments and the measurement of enzyme
activities. Appl. Microbiol. Biotechnol. 64, 91−98.
(59) Zhao, J., and Shimizu, K. (2003) Metabolic flux analysis of
Escherichia coli K12 grown on 13C-labeled acetate and glucose using
GC-MS and powerful flux calculation method. J. Biotechnol. 101,
101−117.
(60) Zhou, S., Causey, T., Hasona, A., Shanmugam, K., and Ingram,
L. (2003) Production of optically pure D-lactic acid in mineral salts
medium by metabolically engineered Escherichia coli W3110. Appl.
Environ. Microbiol. 69, 399−407.
(61) Causey, T., Shanmugam, K., Yomano, L., and Ingram, L.
(2004) Engineering Escherichia coli for efficient conversion of
glucose to pyruvate. Proc. Natl. Acad. Sci. U. S. A. 101, 2235−2240.
(62) Peng, L., Arauzo-Bravo, M. J., and Shimizu, K. (2004)
Metabolic flux analysis for a ppc mutant Escherichia coli based on
13C-labelling experiments together with enzyme activity assays and

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.9b00518
ACS Synth. Biol. 2020, 9, 1665−1681

1680

https://dx.doi.org/10.1016/j.ymben.2009.10.003
https://dx.doi.org/10.1016/j.ymben.2009.10.003
https://dx.doi.org/10.1016/j.ymben.2009.10.003
https://dx.doi.org/10.1007/s00158-003-0368-6
https://dx.doi.org/10.1007/s00158-003-0368-6
https://dx.doi.org/10.1038/nbt.3956
https://dx.doi.org/10.1186/s13568-016-0259-z
https://dx.doi.org/10.1186/s13568-016-0259-z
https://dx.doi.org/10.1038/nature06450
https://dx.doi.org/10.1038/nature06450
https://dx.doi.org/10.1016/j.ymben.2014.09.006
https://dx.doi.org/10.1016/j.ymben.2014.09.006
https://dx.doi.org/10.1186/1475-2859-13-78
https://dx.doi.org/10.1186/1475-2859-13-78
https://dx.doi.org/10.1186/1475-2859-13-78
https://dx.doi.org/10.1038/nchembio.1476
https://dx.doi.org/10.1128/AEM.03034-10
https://dx.doi.org/10.1128/AEM.03034-10
https://dx.doi.org/10.1128/AEM.02708-07
https://dx.doi.org/10.1128/AEM.02708-07
https://dx.doi.org/10.1128/AEM.02708-07
https://dx.doi.org/10.1073/pnas.1209002109
https://dx.doi.org/10.1073/pnas.1209002109
https://dx.doi.org/10.1073/pnas.1209002109
https://dx.doi.org/10.1038/nchembio.580
https://dx.doi.org/10.1038/nchembio.580
https://dx.doi.org/10.1002/bit.25293
https://dx.doi.org/10.1002/bit.25293
https://dx.doi.org/10.1002/bit.25293
https://dx.doi.org/10.1038/ncomms15956
https://dx.doi.org/10.1038/ncomms15956
https://dx.doi.org/10.1038/ncomms15956
https://dx.doi.org/10.1371/journal.pcbi.1003580
https://dx.doi.org/10.1371/journal.pcbi.1003580
https://dx.doi.org/10.1371/journal.pcbi.1003580
https://dx.doi.org/10.1038/msb.2010.47
https://dx.doi.org/10.1038/msb.2010.47
https://dx.doi.org/10.1038/msb.2010.47
https://dx.doi.org/10.1287/opre.46.1.84
https://dx.doi.org/10.1287/opre.46.1.84
https://dx.doi.org/10.1038/s41596-018-0098-2
https://dx.doi.org/10.1038/s41596-018-0098-2
https://dx.doi.org/10.1371/journal.pcbi.1004321
https://dx.doi.org/10.1371/journal.pcbi.1004321
https://dx.doi.org/10.1371/journal.pcbi.1004321
https://dx.doi.org/10.1007/BF00934810
https://dx.doi.org/10.1016/j.ejor.2016.03.002
https://dx.doi.org/10.1016/j.ejor.2016.03.002
https://dx.doi.org/10.1016/j.ejor.2016.03.002
https://dx.doi.org/10.1371/journal.pcbi.1003378
https://dx.doi.org/10.1371/journal.pcbi.1003378
https://dx.doi.org/10.1016/j.ymben.2016.12.004
https://dx.doi.org/10.1016/j.ymben.2016.12.004
https://dx.doi.org/10.1016/j.copbio.2014.12.019
https://dx.doi.org/10.1016/j.copbio.2014.12.019
https://dx.doi.org/10.1093/nar/gkv1049
https://dx.doi.org/10.1093/nar/gkv1049
https://dx.doi.org/10.1016/j.ymben.2009.05.003
https://dx.doi.org/10.1016/j.ymben.2009.05.003
https://dx.doi.org/10.1016/j.ymben.2012.11.008
https://dx.doi.org/10.1016/j.ymben.2012.11.008
https://dx.doi.org/10.1016/j.ymben.2012.11.008
https://dx.doi.org/10.1002/bit.25623
https://dx.doi.org/10.1002/bit.25623
https://dx.doi.org/10.1002/bit.25623
https://dx.doi.org/10.1038/ncomms13806
https://dx.doi.org/10.1038/ncomms13806
https://dx.doi.org/10.1038/ncomms13806
https://dx.doi.org/10.1126/science.1132067
https://dx.doi.org/10.1126/science.1132067
https://dx.doi.org/10.1016/j.bej.2005.05.010
https://dx.doi.org/10.1016/j.bej.2005.05.010
https://dx.doi.org/10.1016/j.bej.2005.05.010
https://dx.doi.org/10.1016/j.bej.2005.05.010
https://dx.doi.org/10.1007/s00253-003-1458-5
https://dx.doi.org/10.1007/s00253-003-1458-5
https://dx.doi.org/10.1007/s00253-003-1458-5
https://dx.doi.org/10.1007/s00253-003-1458-5
https://dx.doi.org/10.1016/S0168-1656(02)00316-4
https://dx.doi.org/10.1016/S0168-1656(02)00316-4
https://dx.doi.org/10.1016/S0168-1656(02)00316-4
https://dx.doi.org/10.1128/AEM.69.1.399-407.2003
https://dx.doi.org/10.1128/AEM.69.1.399-407.2003
https://dx.doi.org/10.1073/pnas.0308171100
https://dx.doi.org/10.1073/pnas.0308171100
https://dx.doi.org/10.1111/j.1574-6968.2004.tb09562.x
https://dx.doi.org/10.1111/j.1574-6968.2004.tb09562.x
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.9b00518?ref=pdf


intracellular metabolite measurements. FEMS Microbiol. Lett. 235,
17−23.
(63) Al Zaid Siddiquee, K., Arauzo-Bravo, M., and Shimizu, K.
(2004) Metabolic flux analysis of pykF gene knockout Escherichia coli
based on 13 C-labeling experiments together with measurements of
enzyme activities and intracellular metabolite concentrations. Appl.
Microbiol. Biotechnol. 63, 407−417.
(64) Kim, P., Laivenieks, M., Vieille, C., and Zeikus, J. G. (2004)
Effect of overexpression of Actinobacillus succinogenes phosphoe-
nolpyruvate carboxykinase on succinate production in Escherichia
coli. Appl. Environ. Microbiol. 70, 1238−1241.
(65) Lin, H., Vadali, R. V., Bennett, G. N., and San, K.-Y. (2004)
Increasing the acetyl-CoA pool in the presence of overexpressed
phosphoenolpyruvate carboxylase or pyruvate carboxylase enhances
succinate production in Escherichia coli. Biotechnol. Prog. 20, 1599−
1604.
(66) Pharkya, P., Burgard, A. P., and Maranas, C. D. (2004)
OptStrain: a computational framework for redesign of microbial
production systems. Genome Res. 14, 2367−2376.
(67) Pharkya, P., and Maranas, C. D. (2006) An optimization
framework for identifying reaction activation/inhibition or elimi-
nation candidates for overproduction in microbial systems. Metab.
Eng. 8, 1−13.
(68) Chowdhury, A., Zomorrodi, A. R., and Maranas, C. D. (2014)
k-OptForce: integrating kinetics with flux balance analysis for strain
design. PLoS Comput. Biol. 10, No. e1003487.
(69) Dinh, H. V., King, Z. A., Palsson, B. O., and Feist, A. M. (2018)
Identification of growth-coupled production strains considering
protein costs and kinetic variability. Metab. Eng. Commun. 7,
No. e00080.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://dx.doi.org/10.1021/acssynbio.9b00518
ACS Synth. Biol. 2020, 9, 1665−1681

1681

https://dx.doi.org/10.1111/j.1574-6968.2004.tb09562.x
https://dx.doi.org/10.1007/s00253-003-1357-9
https://dx.doi.org/10.1007/s00253-003-1357-9
https://dx.doi.org/10.1007/s00253-003-1357-9
https://dx.doi.org/10.1128/AEM.70.2.1238-1241.2004
https://dx.doi.org/10.1128/AEM.70.2.1238-1241.2004
https://dx.doi.org/10.1128/AEM.70.2.1238-1241.2004
https://dx.doi.org/10.1021/bp049843a
https://dx.doi.org/10.1021/bp049843a
https://dx.doi.org/10.1021/bp049843a
https://dx.doi.org/10.1101/gr.2872004
https://dx.doi.org/10.1101/gr.2872004
https://dx.doi.org/10.1016/j.ymben.2005.08.003
https://dx.doi.org/10.1016/j.ymben.2005.08.003
https://dx.doi.org/10.1016/j.ymben.2005.08.003
https://dx.doi.org/10.1371/journal.pcbi.1003487
https://dx.doi.org/10.1371/journal.pcbi.1003487
https://dx.doi.org/10.1016/j.mec.2018.e00080
https://dx.doi.org/10.1016/j.mec.2018.e00080
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.9b00518?ref=pdf

