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A B S T R A C T   

Microbial metabolism can be harnessed to produce a large library of useful chemicals from renewable resources 
such as plant biomass. However, it is laborious and expensive to create microbial biocatalysts to produce each 
new product. To tackle this challenge, we have recently developed modular cell (ModCell) design principles that 
enable rapid generation of production strains by assembling a modular (chassis) cell with exchangeable pro-
duction modules to achieve overproduction of target molecules. Previous computational ModCell design methods 
are limited to analyze small libraries of around 20 products. In this study, we developed a new computational 
method, named ModCell-HPC, that can design modular cells for large libraries with hundreds of products with a 
highly-parallel and multi-objective evolutionary algorithm and enable us to elucidate modular design properties. 
We demonstrated ModCell-HPC to design Escherichia coli modular cells towards a library of 161 endogenous 
production modules. From these simulations, we identified E. coli modular cells with few genetic manipulations 
that can produce dozens of molecules in a growth-coupled manner with different types of fermentable sugars. 
These designs revealed key genetic manipulations at the chassis and module levels to accomplish versatile 
modular cells, involving not only in the removal of major by-products but also modification of branch points in 
the central metabolism. We further found that the effect of various sugar degradation on redox metabolism 
results in lower compatibility between a modular cell and production modules for growth on pentoses than 
hexoses. To better characterize the degree of compatibility, we developed a method to calculate the minimal set 
cover, identifying that only three modular cells are all needed to couple with all compatible production modules. 
By determining the unknown compatibility contribution metric, we further elucidated the design features that 
allow an existing modular cell to be re-purposed towards production of new molecules. Overall, ModCell-HPC is 
a useful tool for understanding modularity of biological systems and guiding more efficient and generalizable 
design of modular cells that help reduce research and development cost in biocatalysis.   

1. Introduction 

Modular design has gained recent interest as an effective approach to 
understand and redesign cellular systems (Garcia and Trinh, 2019a). In 
the fields of metabolic engineering and synthetic biology, various 
modularization strategies (Biggs et al., 2014; Trinh et al., 2015; Garcia 
and Trinh, 2019b, 2019c, 2020; Garcia et al., 2020) have been proposed 
to address the slow and expensive design-build-test cycles of developing 
microbial catalysts for renewable chemical synthesis (Nielsen and 
Keasling, 2016). A promising system-level modularization approach 
(Purnick and Weiss, 2009) is ModCell (Garcia and Trinh, 2019b), that 

aims to design a modular (chassis) cell compatible with exchangeable 
production modules that enable metabolite overproduction. ModCell 
could be used as an effective tool to design modular cells capable of 
efficiently producing a vast number of molecules offered by nature with 
minimal strain optimization requirements (Trinh and Mendoza, 2016; 
Lee et al., 2019), but it remains unexplored for large product libraries. 

Previous efforts in computational modular cell design are limited to 
analyze small libraries of around 20 products (Garcia and Trinh, 2019b, 
2020). However, the design of modular cells for larger product libraries 
is both of practical and theoretical interest. Theoretically, analyzing 
large libraries can discover more general modular cell design rules, 
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which might help to explain the naturally existing modularity of meta-
bolic networks (Garcia and Trinh, 2019a). Practically, such modular 
cells could be implemented with genetic engineering techniques that 
enable rapid pathway generation, such as combinatorial ester pathways 
(Layton and Trinh, 2014). These modular cells could serve as a versatile 
platform for pathway selection and optimization using adaptive labo-
ratory evolution (Wilbanks et al., 2017). 

Modular cell design was formulated as a multi-objective optimiza-
tion problem (MOP), named ModCell2, where each target phenotype 
activated by a module is an independent objective (Garcia and Trinh, 
2019b). ModCell2 was solved with multi-objective evolutionary algo-
rithms (MOEAs) that used a master-slave parallelization scheme, where 
the objective functions are evaluated in parallel by slave processes, but 
every other step in the algorithm is performed serially (Fig. 1 a). (Garcia 
and Trinh, 2019b, 2019c) This approach contains many serial steps, and 
hence limits the scalability of the algorithm with the number of pro-
cesses according to the Ahmdal’s law (Hill and Marty, 2008). In 
particular, using large population sizes, an effective strategy to deal with 
many objectives (Garcia and Trinh, 2019c; Ishibuchi et al., 2009), could 
dramatically slow down serial algorithm operations such as 
non-dominated sorting in NSGA-II (Deb et al., 2002), one of the best 
performing MOEAs to solve ModCell2 (Garcia and Trinh, 2019c). 
Furthermore, increasing the product library size for ModCell leads to 
very large multi-objective optimization problems, which are notoriously 
difficult to solve (Ishibuchi et al., 2008; Li et al., 2018). Therefore, the 
master-slave approach used in ModCell2 is not suitable to analyze large 
problems that contain hundreds of exchangeable production modules. A 
new parallelization approach that utilizes high-performance computing 
(HPC) more effectively is needed to advance ModCell. 

In recent years, multiple approaches to harness HPC have been 
developed to solve single-objective evolutionary algorithms (EAs) (Alba 
et al., 2013). In particular, the island-parallelization approach has been 
proposed, where multiple instances of the EAs are run independently but 
communicate with each other to enhance overall convergence towards 
optimal solutions (Fig. 1 b). This new approach helps address the serial 
bottlenecks of the master-slave approach by separating the algorithm 
into highly independent processes that directly map to the computing 
hardware. While this approach has not been thoroughly examined in 
MOEAs, there are a few successful applications to specific design prob-
lems (Martens and Izzo, 2013; Jozefowiez et al., 2005; García-Sánchez 
et al., 2016). 

In this study, we developed ModCell-HPC, a highly parallel MOEA 
that uses the island parallelization approach to solve modular cell design 
problems with hundreds of objectives. We demonstrated ModCell-HPC 
to design Escherichia coli modular cells with a large production module 

library of metabolically and biochemically diverse endogenous com-
pounds and developed analysis tools to elucidate the principles of 
modular design. We envision that ModCell-HPC provides a useful tool to 
study modularity of biological systems and guide more efficient and 
generalizable design of modular cells that help reduce research and 
development cost in biocatalysis. 

2. Methods 

2.1. Multi-objective optimization formulation of modular cell design 
problem 

The modular (chassis) cell can be built in a top-down manner by 
removing metabolic functions from a parent strain, and then inserting 
exchangeable modules into the chassis to create production strains that 
optimally display the target phenotypes (Trinh et al., 2015; Garcia and 
Trinh, 2019b, 2020). Due to the conflicting metabolic requirements of 
different product synthesis pathways, the modular cell design problem is 
formulated as the following MOP known as ModCell2 (Garcia and Trinh, 
2019b): 

max
yj ,zjk

(
f1, f2,…, f|K|

)T
subject to (1)  

fk ∈ arg max

{
1

f max
k

∑

j∈Jk

cjkvjk subject to (2)  

∑

j∈Jk

Sijkvjk = 0 for all i ∈ Ik (3)  

ljk ≤ vjk ≤ ujk for all j ∈ Jk (4)  

ljkdjk ≤ vjk ≤ ujkdjk for all j ∈ C (5)  

djk = yj ∨ zjk
}

for all k ∈ K (6)  

zjk ≤
(
1 − yj

)
for all j ∈ ℂ, k ∈ K (7)  

∑

j∈C

zjk ≤ β for all k ∈ K (8)  

∑

j∈C

(
1 − yj

)
≤ α (9) 

This MOP simultaneously maximizes all objectives fk (1), where k 
belongs to the set of production networks K. Each production network 
represents the combination of the chassis with a specific production 

Fig. 1. Parallelization schemes for 
multi-objective evolutionary algo-
rithms. (a) Master-slave approach used 
in the original ModCell2 implementa-
tion. (b) Island parallelization following 
ring topology implemented in ModCell- 
HPC. (c) Key steps in the evolutionary 
algorithm (EA). All islands execute this 
same algorithm except for the migration 
step that depends on the topology; for 
instance, island 7 exchanges individuals 
with islands 6 and 8. The pseudocode 
for the algorithm is presented in Fig. S1.   
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module, and it is simulated through a stoichiometric model (Palsson, 
2015) (2–6) with a set of metabolites Ik and a set of reactions Jk. The 
stoichiometric model predicts metabolic fluxes according to the 
following constraints: (i) mass-balance (3), where Sijk represents the 
stoichiometric coefficient of metabolite i in reaction j of production 
network k, (ii) flux bounds (4) that determine reaction reversibility and 
available substrates, where ljk and ujk are lower and upper bounds 
respectively, and (iii) genetic manipulation (5), i.e., deletion of a reac-
tion j in the chassis through the binary indicator yj, or insertion of a 
reaction j in a specific production network k through the binary indi-
cator zjk. Only a subset of all metabolic reactions, ℂ, are considered as 
candidates for deletion, since many of the reactions in the metabolic 
model cannot be manipulated to enhance the target phenotype. 

The desirable phenotype fk for production module k is determined 
based on key metabolic fluxes vjk (mmol/gDCW/h) predicted by the 
model (2–5). For this study, we selected the weak growth coupled to 
product formation (wGCP) design objective that requires a high mini-
mum product synthesis rate at the maximum growth rate, enabling 
growth selection of optimal production strains. Hence, in wGCP design, 
the inner optimization problem seeks to maximize growth rate while 
calculating the minimum product synthesis rate through the linear 
objective function (2). Here cjk is 1 and − 0.0001 for j corresponding to 
the biomass and product reactions across all networks k, respectively, 
and 0 otherwise. In general, the definition of fk needs not be linear and 
other design phenotypes can be defined (Garcia and Trinh, 2019b). 

Finally, design constraints (7–9) define the limitations of the design 
variables representing genetic manipulations, yj and zjk. As part of 
modular cell design, reactions can be removed from the chassis but 
inserted back to specific production modules, enabling the chassis to be 
compatible with a broader number of modules (7). The total numbers of 
module reaction additions and reaction deletions in the chassis are 
limited by parameters β (8) and α (9), respectively. 

To define the solutions of ModCell2 (1–9), the general multi- 
objective optimization problem with design variables x from a set X 

and objective functions fi(x) is expressed as follows: 

max
x

F(x) = (f1(x), f2(x),…)
T
∀x ∈ X 

The solution of such an optimization problem is denoted as a Pareto 
set: 

PS := {x ∈ X : ∄ x’ ∈ X, F(x’) ≺ F(x)}

Here F (x′) ≺ F(x) indicates that the objective vector F (x′) dominates F 
(x), defined as fi (x′) ≥ fi(x) for all objectives i, and fi (x′) ∕= fi(x) for at 
least one i. Hence, the Pareto set contains all non-dominated solutions to 
the optimization problem; that is, when comparing any two non- 
dominated solutions, the value of a certain objective must be dimin-
ished in order to increase the value of a different objective. The pro-
jection of the Pareto set on the objective space is denoted as a Pareto 
front: 

PF := {F(x) : x ∈ PS}

2.2. HPC implementation of many-objective evolutionary algorithm and 
procedures for solution post-processing 

To overcome the issues of the master-slave approach (Fig. 1 a) used 
in ModCell2 (Garcia and Trinh, 2019b), we implemented an island 
parallelization scheme (Alba et al., 2013), where each computing pro-
cess is an instance of the MOEA (Fig. 1 b). These instances exchange 
individuals (i.e., potential solutions) in a process called migration, hence 
enhancing overall convergence towards optimal solutions (Fig. 1 c). The 
migration operation can be performed in different modes, depending on 
which individuals from the local population are exchanged, and also 
how often such exchanges happen. These options are captured by the 
migration type and migration interval parameters, respectively 

(Table 1). To enhance performance and scalability, the migration pro-
cess was implemented asynchronously, i.e., the population within each 
island can continue to evolve without a need to wait for sent individuals 
to arrive at their destination island or for incoming individuals to be 
received. 

To improve the quality of the MOEA solutions, we implemented two 
post-processing steps specific to ModCell (Fig. S2). First, we eliminate 
futile module reactions. These module reactions once removed do not 
diminish the objective value of the associated production network. 
Second, we coalesce multiple designs with the same deletions but 
different module reactions. This combination helps obtain a superior 
solution. Futile module reactions are predicted because as long as the 
maximum number of module reactions β is met, module reactions that 
do not affect negatively or positively the design objectives can be added. 

The software implementation of the proposed island-MOEA, denoted 
ModCell-HPC, is written in the C programming language and available in 
Supplementary Material 3 and https://github.com/TrinhLab/modcell-h 
pc. 

2.3. Computation hardware 

We conducted all ModCell-HPC computations in beacon nodes from 
the Advanced Computing Facility at the Joint Institute for Computa-
tional Science, The University of Tennessee and Oak Ridge National 
Laboratory. Each node contains a 16 core Intel Xeon E5-2670 central 
processing unit (CPU) and 256 GB of random access memory (RAM). The 
results were analyzed in a desktop computer with an Intel Core i7-3770 
CPU and 32 GB of RAM. 

2.4. Target product identification 

The target products are endogenous E. coli metabolites that meet the 
following requirements: i) their maximum theoretical yields are above 
0.1 (mol product/mol of substrate); ii) they are organic; and iii) they 
could be produced anaerobically in a growth coupled manner with a 
yield above 50%, a property determined in a previous study (Von Kamp 
and Klamt, 2017). If a given metabolite meets all these conditions but 
appears in multiple compartments, only one location is chosen. Imple-
mentation of these selection criteria resulted in 161 target metabolites. 
A metabolite that did not have a secretion mechanism originally present 
in the model is set to have an exchange pseudo-reaction that represents 
metabolite secretion to the growth medium or intracellular accumula-
tion at steady-state. The products in the selected library have diverse 
molecular weights and are overall highly reduced (Fig. S3). 

2.5. Model configuration 

We used the iML1515 E. coli model (Monk et al., 2017) for all sim-
ulations. To configure the model, glucose uptake was set to 15 
(mmol/gCDW/h); the default ATP maintenance value in iML1515 was 
used; 20% of the maximum anaerobic growth rate was used as the 
minimum growth rate, corresponding to 0.0532 (1/h); and only 
commonly observed fermentation products were allowed for secretion. 

Table 1 
Island-MOEA parameters evaluated in ModCell-HPC.  

Name Description 

Population size Number of individuals per island. 
Migration type “ReplaceBottom”: After non-dominated sorting of the Pareto 

front (Deb et al., 2002) (survivor selection), top individuals 
are sent and bottom individuals replaced. “Random”: 
Random individuals are sent and replaced. 

Migration interval Number of generations between migration events. 
Run time Wall-clock time for which the MOEA runs. It determines the 

total number of generations. 
Cores Each island is a computing core at the hardware level.  

S. Garcia and C.T. Trinh                                                                                                                                                                                                                      

https://github.com/TrinhLab/modcell-hpc
https://github.com/TrinhLab/modcell-hpc


Metabolic Engineering 67 (2021) 453–463

456

This model configuration is equivalent to the previous modular cell 
design studies (Garcia and Trinh, 2019b) except for the higher glucose 
uptake rate. This rate was increased to match the study of Kamp and 
Klamt (Von Kamp and Klamt, 2017) which was partially used here to 
identify target products. 

2.6. Design characterization 

2.6.1. Compatibility 
An important qualitative feature of a designed modular (chassis) cell 

is module compatibility. The chassis is compatible with a module if the 
performance of the resulting production strain is above a defined 
threshold of design objective value. In this study, we used the wGCP 
design objective that corresponds to the minimum product yield at the 
maximum growth rate (Garcia and Trinh, 2019b), and selected a 
threshold of 0.5 to establish compatibility. Under these conditions, we 
expect a module compatible with the chassis can lead to a product yield 
above 50% of the theoretical maximum value during the growth phase. 
Quantitatively, the compatibility of a modular cell is defined as the 
number of modules that are compatible with it. 

2.6.2. Minimal covers 
A minimal (set) cover is the smallest group of modular cells needed to 

ensure all potentially compatible products in a library are compatible 
with at least one of the modular cells. To identify minimal covers 
computationally, we used the classical integer programming 
formulation: 

min
xh∈{0,1}

∑

h∈ℍ
(γhxh)

subject to
(10)  

∑

h∈ℍ
ahkxh ≥ 1 ∀k ∈ K’ (11) 

This optimization problem minimizes the number of designs in the 
set cover, where H is the set of strain designs, h, produced by ModCell- 
HPC (10). The binary indicator variable xh takes a value of 1 if design h is 
selected as part of the set cover and 0 otherwise. Certain designs can be 
prioritized (e.g., they contain preferable genetic manipulations) using 
the weighting parameter γh. However, we set γh = 1 in all our simula-
tions. All compatible products k must be included in at least one of the 
selected designs (11). The parameter ahk takes a value of 1 if product k is 
compatible with design h and 0 otherwise. There must exist at least one 
h ∈ H for which ahk = 1 to ensure a feasible solution exists; therefore, K’ 
is the subset of products compatible in at least one design of H. 

To enumerate all minimal covers, we iteratively solved the minimal 
cover problem (10-11) with the addition, in each iteration, of an integer 
cut inequality (12) that removes a previously found solution 𝒮. 
∑

h∈S

xh ≤ |S| − 1 (12)  

2.7. Coverage performance indicator 

Algorithm performance is tested against several parameter configu-
rations, each producing a Pareto front approximation (PF). All resulting 
Pareto fronts are gathered into a reference Pareto front (PF*). Coverage, 
C, is defined as the fraction of solutions in PF* captured by a given 
approximation PF: 

C =
|PF ∩ PF*|

|PF*|
(13) 

In our analysis, we only used unique non-dominated points in both 
PF and PF* to avoid many alternative solutions from biasing the 
coverage indicator. 

3. Results 

3.1. Tuning of ModCell-HPC parameters 

A known challenge of heuristic optimization approaches is their 
reliance on parameter tuning for rapid convergence towards optimal 
solutions. To identify sensible default parameters for ModCell-HPC, we 
first scanned parameter combinations with a previous 20-objectives 

Fig. 2. ModCell-HPC benchmark with 161 products. (a) and (e) Coverage 
presents the fraction of Pareto optimal designs captured by a Pareto front 
approximation (Section 2.7). (b) and (f) Compatible modules indicate the 
products that appear in at least one design with a design objective above the 
compatibility threshold, while minimal cover size is the smallest number of 
designs needed to capture all compatible products (Section 2.6). (c) and (g) 
Total and unique number of solutions in the Pareto front approximations. (d) 
and (h) Total number of generations. 
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problem (Garcia and Trinh, 2019b) that is fast to solve, then focused on 
the most relevant parameters for a large-scale problem with 161 ob-
jectives corresponding to the current product library. In both cases, we 
used two performance metrics to identify the best algorithm parameters: 
i) Coverage, that indicates the fraction of Pareto optimal solutions 
identified by a given parameter configuration (Section 2.7) and ii) 
minimal cover size, i.e., the smallest number of modular cells needed to 
ensure all compatible products in the library that are compatible in at 
least one (Section 2.6.2). Coverage is a general and unbiased quantita-
tive measure which is preferred over other similar metrics based on a 
previous study (Garcia and Trinh, 2019c), while minimal cover size is 
based on practical goals. 

In our initial benchmark study with the 20-objectives problem, we 
screened different total run times, migration intervals, migration types, 
and population sizes (Table 1) for best achieving modular cell designs. 
The design parameters were set to α = 6 and β = 1, which are sufficient 
to find highly compatible designs (Garcia and Trinh, 2020). For 1-h run 
time, we observed the smallest population size of 100 reached more 
generations (Fig. S4 e,f) and hence achieved better results in both 
metrics (Fig. S4 a,b). However, for a 2-h run time, both population sizes 
of 100 and 500 attained similar cover sizes (Figure S4 g), indicating that 
a minimum of approximately 150 generations (Fig. S4 e,f,k,l) is neces-
sary for convergence of this problem, irrespective of the population size. 
Taken together, the different performance between 100 and 500 popu-
lation sizes in relation to run time indicates that under limited run times 
an optimal population size could be found to attain sufficient genera-
tions for convergence. The migration interval only appeared detrimental 
at the highest value of 50 with the smallest population size of 100 at 1 h 
(Fig. S4 a,b,g,h); otherwise this parameter was considered secondary, 
and hence an intermediate value of 25 was selected for further simula-
tions. Similarly, migration policy also appeared to be a secondary 
parameter; nonetheless, the “ReplaceBottom” migration policy was 
selected for further simulations since it is better or equal to the 
“Random” policy in all cases (Fig. S4 c,d,i,j). 

For the large-scale benchmark with 161 products, we investigated 
the importance of run time, population size, and the number of 
computational cores (Table 1). For this benchmark, the design param-
eters were set to α = 10 and β = 2 to enable successful designs without a 
large number of genetic modifications that can lead to unrealistic model 
predictions and implementation requirements. We evaluated 5 and 10 h 
run times. For 5-h run time, a population size of 200 was better in all 
metrics (Fig. 2 a,b,c,e,f,g) and reached 50–100 generations (Fig. 2 d). 
For a 10-h run time, the population sizes of 200 and 300 achieved 

equivalent performance (Fig. 2 e-g), despite the population size of 200 
reaching approximately 50 generations more than the population size of 
300. The population size of 100 underperformed at both run-times 
(Fig. 2 a,b,e,f). Taken together, this large-scale benchmark study in-
dicates that after a given number of generations, larger population sizes 
are comparable as long as they are above a minimum size. Hence, a 
population size of 200 is the minimum required for proper convergence 
and should be used under limited run times. Increasing the number of 
cores leads to more solutions (Fig. 2 c,g), due to a larger meta-population 
(the total population of all islands). However, additional cores do not 
necessarily find better solutions in terms of minimal cover size and in-
dividual product compatibility (Fig. 2 b,f). These indicators plateaued at 
around 48 cores in both cases so this value was used for further simu-
lations. Alternative communication topologies among islands (Hijaze 
and Corne, 2009) may provide better scaling with cores but were not 
explored here. 

In summary, the benchmark performed here aims to provide a gen-
eral guideline to use the ModCell-HPC. Furthermore, the parameter 
meta-optimization procedure can be repeated to fine-tune the algorithm 
to specific problem features (e.g., number of objectives) and computa-
tional resources available (e.g., run time and computing cores). Unlike 
ModCell-HPC, the previous algorithm ModCell2 based on the master- 
slave parallelization could not find a solution for the benchmark of 
161 products using the same computer configuration. 

3.2. Design of E. coli modular cells for large product library 

3.2.1. A small number of genetic manipulations are sufficient for highly 
compatible modular cell 

After tuning ModCell-HPC, we used it to design E. coli modular cells 
for our library of 161 products. First, we scanned a broad range of design 
parameter combinations (α-β: 5-1, 10-2, 20-4, and 40-8) to identify the 
required genetic manipulations for highly compatible designs (Figure S5 
a). Increasing the number of genetic manipulations led to an average 
increase in design compatibility. However, the maximum compatibility 
remained around 50% of the library (80 products) for all cases. This 
result indicates that highly compatible modular cells can be built with a 
small number of genetic manipulations. We selected the designs with α 
= 5, β = 1 (Supplementary Material 2) for further analysis, since designs 
with few genetic manipulations are easier to implement in practice. 

Table 2 
Top 20 reaction deletions for design parameters α = 5, β = 1 with 162 designs. Counts indicate the percentage of designs where the deletion is used. All reaction and 
metabolite abbreviations used in this study correspond to BiGG identifiers (http://bigg.ucsd.edu).  

ID Name Formula Counts (%) 

ALCD2x Alcohol dehydrogenase (ethanol) etoh_c + nad_c ↔ acald_c + h_c + nadh_c 57.4 
TPI Triose-phosphate isomerase dhap_c ↔ g3p_c 45.1 
ACALD Acetaldehyde dehydrogenase (acetylating) acald_c + coa_c + nad_c ↔ accoa_c + h_c + nadh_c 40.7 
FLDR2 Flavodoxin reductase (NADPH) 2.0 flxso_c + nadph_c → 2.0 flxr_c + h_c + nadp_c 24.1 
PPC Phosphoenolpyruvate carboxylase co2_c + h2o_c + pep_c → h_c + oaa_c + pi_c 21.6 
TKT2 Transketolase e4p_c + xu5p__D_c ↔ f6p_c + g3p_c 15.4 
LDH_D D-lactate dehydrogenase lac__D_c + nad_c ↔ h_c + nadh_c + pyr_c 13 
G3PD2 Glycerol-3-phosphate dehydrogenase (NADP) glyc3p_c + nadp_c ↔ dhap_c + h_c + nadph_c 7.4 
POR5 Pyruvate synthase coa_c + 2.0 flxso_c + pyr_c ↔ accoa_c + co2_c + 2.0 flxr_c + h_c 7.4 
ACKr Acetate kinase ac_c + atp_c ↔ actp_c + adp_c 6.8 
THD2pp NAD(P) transhydrogenase (periplasm) 2.0 h_p + nadh_c + nadp_c → 2.0 h_c + nad_c + nadph_c 6.2 
GLUDy Glutamate dehydrogenase (NADP) glu__L_c + h2o_c + nadp_c ↔ akg_c + h_c + nadph_c + nh4_c 5.6 
ASPT L-aspartase asp__L_c → fum_c + nh4_c 5.6 
ASNS2 Asparagine synthetase asp__L_c + atp_c + nh4_c → amp_c + asn__L_c + h_c + ppi_c 4.9 
CBMKr Carbamate kinase atp_c + co2_c + nh4_c ↔ adp_c + cbp_c + 2.0 h_c 4.3 
RNDR4 Ribonucleoside-diphosphate reductase (UDP) trdrd_c + udp_c → dudp_c + h2o_c + trdox_c 3.7 
RPE Ribulose 5-phosphate 3-epimerase ru5p__D_c ↔ xu5p__D_c 3.1 
SERD_L L-serine deaminase ser__L_c → nh4_c + pyr_c 3.1 
LCARS Lacaldehyde reductase (S-propane-1,2-diol forming) h_c + lald__L_c + nadh_c ↔ 12ppd__S_c + nad_c 2.5 
FUM Fumarase fum_c + h2o_c ↔ mal__L_c 2.5  
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3.2.2. A few reaction deletions in central metabolism targeting byproducts 
and branch-points are key to build modular cells 

We sorted reaction deletions according to how often they appear 
across designs (Table 2). The top 7 reactions are used ≥10% of the de-
signs and belong to central metabolism, indicating their importance to 
accomplish growth-coupled-to-product-formation phenotypes. Overall, 
the role of these deletions can be classified into two functions: i) to 
eliminate major byproducts and ii) to alter key branch-points in meta-
bolism that influence the pools of precursor metabolites, including 
carbon, redox, and energy precursors. The first type of manipulations is 
generally intuitive and often used in metabolic engineering strategies 
(Winkler et al., 2015). The second type of manipulations are not 
commonly identified unless metabolic model simulations are used 
(Tokuyama et al., 2014; Venayak et al., 2018; Chemler et al., 2010), 
even though the importance of targeting metabolic branch-points was 
noted early (Stephanopoulos and Vallino, 1991). An example of this 
second type observed in our designs is TPI deletion, that activates the 
methylglyoxal bypass (Fong et al., 2006), reducing the overall ATP yield 
resulting from glucose conversion into pyruvate. Lower ATP yield limits 
biomass formation hence redirecting carbon flow towards products of 
interest. While such strategies are not common, TPI deletion predicted 
by model simulations was successfully used for enhanced 3-hydroxypro-
pionic acid production (Tokuyama et al., 2014), and ATP wasting has 
recently been proposed to enhance production of certain molecules 
(Boecker et al., 2019). Another example of branch-point manipulation is 
PPC deletion, that has been shown to lower flux from lower glycolysis 
towards the TCA cycle (De Maeseneire et al., 2006; Peng et al., 2004), 
resulting in lower succinate production, and an increased pool of pep, 
pyruvate and acetyl-CoA. Additionally, PPC deletion to increase the 
nadph pool for production of flavonoids was predicted by model simu-
lation and experimentally validated (Chemler et al., 2010). In summary, 
design of highly compatible modular cells requires not only major 
byproduct removal, but also manipulation of key branch points in cen-
tral metabolism. 

3.2.3. Module reaction usage reveals pathway interfaces and unbiased 
module definition 

The modular cell optimization formulation (Section 2.1) not only 

identifies genetic manipulations in the modular cell, but also in the 
production modules. Module reactions correspond to reactions deleted 
in the chassis but inserted back in specific production modules to enable 
compatibility. We examined the module reactions used by all designs 
(Fig. 3). As expected, the module reactions ALCD2x, ACKr, and LDH_D 
are used by the ethanol, acetate, and lactate production modules, 
respectively. Notably, we observed that products which are not highly 
reduced, such as acetate, use ACALD; and similarly, 3-methyl-2-oxobu-
tanoate and 2,3-dihydroxy-3-methylbutanoate (precursors of valine and 
isobutanol) use FUM and MDH (Atsumi et al., 2008, 2010). These 
module reactions likely play a role in both the synthesis of relevant TCA 
precursors and the secretion of succinate as an electron sink. Interest-
ingly, fatty acids tend to use TPI, whose deletion, as mentioned earlier, 
activates the methylglyoxal bypass to lower the overall ATP yield. Since 
the first step in fatty acid biosynthesis, acetyl-CoA carboxylase, requires 
one ATP per mol of malonyl-CoA, it explains the usage of TPI as a 
module reaction for this family of fatty acid products. Overall, module 
reactions enhance the compatibility of a modular cell, leading to more 
efficient design strategies, revealing potential metabolic flux bottlenecks 
that are not always directly upstream of the target products, and 
providing insights into pathway interfaces and unbiased module 
definition. 

3.2.4. Three modular cells is the smallest set needed to cover all compatible 
products 

We next aimed to identify the smallest set of modular cells that 
include all compatible products in the library (Section 2.6.2). For the 
Pareto set of designs α = 5, β = 1, we enumerated a total of 12 minimal 
covers of size 3. These covers are spanned by combinations of 8 unique 
designs (Fig. S6). We selected the cover k that contains designs 82, 121, 
and 124, which use few deletions and have similar genetic manipula-
tions among them. All designs in this cover have in common the deletion 
of ALCD2x and LDH_D, disabling production of ethanol and lactate, the 
major reduced products of anaerobic growth in E. coli. Designs 121 and 
124 have 57 compatible products in common, while design 121 is 
uniquely compatible with ethanol, formate, and 2,3-dihydroxymethyl-
butanoate, and design 124 is uniquely compatible with succinate 
(Fig. 4 a). These two designs only differ in that design 121 uses FUM 

Fig. 3. Module reaction usage for design parameters α = 5, β = 1. Only designs compatible with the product are considered in the module usage frequency.  
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deletion while design 124 uses MDH deletion (Fig. 4 b). Different from 
designs 121 and 124, design 82 is the only design that features the 
deletion of FLDR2 and PPC and is uniquely compatible with 24 modules, 
all for fatty acids synthesis. FLDR2 is coupled with POR5 to form a 
pathway for the reduction of pyruvate into acetyl-CoA consuming nadph 
(Fig. 4 c), a key redox cofactor in fatty acid biosynthesis. PPC deletion is 
a metabolic engineering strategy to increase nadph available that has 
been experimentally validated (Chemler et al., 2010). Overall, these 
designs can be efficiently built due to their similarity, and are mainly 

composed of strategies that have been demonstrated in isolation and 
cover large product families. 

3.3. Design of E. coli modular cells for conversion of hexoses and pentoses 

3.3.1. Non-glucose carbon sources require more genetic manipulations for 
high compatibility designs 

We designed modular cells to consume other relevant fermentable 
sugars besides glucose also present in biomass feedstocks, including 

Fig. 4. Comparison of the designs in the selected minimal cover. (a) Venn diagram of products compatible with each design. The products uniquely compatible with 
specific designs are: Design 121: etoh, for, 23dhmb; Design 124: succ; Design 82: pg140, 2hdecg3p, 2odec11eg3p, 1agpg180, pe140, pg161, pg141, 2hdec9eg3p, pgp161, 
2agpg180, 1ddecg3p, pg120, pgp141, pgp140, pe141, ps140, apg120, ps120, pgp120, pe120, lipidX, 2tdecg3p, 2odecg3p, ps141. See https://bigg.ucsd.edu for abbreviation 
descriptions. (b) Venn diagram of reaction deletions that constitute each design. (c) Metabolic map with reaction deletions colored in red. This map is derived from 
the iJO1366 map that can be further explored on https://escher.github.io/ for details. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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pentoses (i.e., xylose and arabinose) and hexoses (i.e., galactose and 
mannose) (Fig. 5 a). For this case study, everything remained the same 
except for the substrate uptake reaction in the model which was changed 
to reflect the sole carbon source in each case. We first scanned the dis-
tribution of design compatibilities resulting from various combinations 
of α and β for each carbon source (Fig. S5 b-e). All cases plateaued at 
maximum compatibilities around 50%; however, galactose, arabinose 
and xylose required at least α = 10, β = 2 to reach this level, while 
glucose and mannose reached it with only α = 5, β = 1. Hence, we 
selected α = 10, β = 2 for further analysis. Overall, this simulation re-
veals the possibility of highly compatible modular cells for various 
hexose and pentose carbon sources, at the expense of an increased 
number of genetic manipulations for some of the carbon sources. 

3.3.2. The effect of pentose uptake on redox metabolism leads to lower 
compatibility for pentoses than hexoses 

For the set of designs in each carbon source, we examined the total 
compatible products, i.e., the number of unique products compatible in 
at least one design from the Pareto front. This analysis revealed a group 
of 26 products (27% of the total 96 compatible products and 16% of the 
original library size) that are only compatible in designs with hexose 
carbon sources (Fig. 5 b). The incompatibility of these 26 products is 
likely due to the lower reduction potential and different uptake path-
ways of pentoses with respect to hexoses (Fig. 5 a). More specifically, 
analysis of the most deleted reactions in each carbon source revealed 

several differences in deletions between pentoses and hexoses (Fig. 5 c). 
Notably, pentoses do not use TKT2 and MDH reaction deletions, while 
hexoses make highly frequent use of them. TKT2 is a key component of 
incorporating pentoses into glycolysis, and hence cannot be deleted by 
pentose consuming designs. MDH has been observed to be up-regulated 
under anaerobic conditions when the sole carbon source is pyruvate, 
galactose, or xylose with respect to glucose (Park et al., 1995). Hence, 
MDH could be an important source of nadh for substrates with less 
reduction potential. Alternatively, MDH could also be important for 
nadph generation as part of a pathway involving NADP-dependent malic 
enzyme (ME2) that converts malate to pyruvate and generates one mol 
of nadph. Overall, pentose uptake does not use the oxidative branch of 
the pentose phosphate pathway, the most important source of nadph in 
E. coli (Christodoulou et al., 2018), hence limiting the products that can 
be growth-coupled to these carbon sources. Further study of the re-
actions that limit pentose compatibility could enable strategies to 
overcome it in certain cases (e.g., generation of alternative sources of 
nadph (Lee et al., 2013; Ng et al., 2015)). 

3.4. Compatibility towards modules unknown at the time of chassis design 

3.4.1. Highly compatible designs are likely better suited to be re-purposed 
towards unknown products 

To rapidly explore the large space of potential production modules, 
existing strains could be re-purposed for production of molecules not 

Fig. 5. Design of modular cells for different carbon sources with design parameters α = 10, β = 2. (a) Sugar uptake, pentose phosphate, Entner-Doudoroff, and upper 
glycolysis pathways. (b) Venn diagram of total products compatible with designs using pentoses and hexoses. The 26 products uniquely compatible with hexoses are: 
1agpg180, 2tdecg3p, 2agpg181, 3c3hmp, 3mob, 2hdecg3p, pe141, ps120, 1agpg160, 2agpg160, 23dhmb, ps141, 1agpe180, 2agpg180, apg120, 2agpe180, pe120, 2ode-
c11eg3p, 4mop, lipidX, 3c2hmp, 2ippm, 2hdec9eg3p, 1agpg181, dha, 2odecg3p. (c) Top 20 reaction deletions according to deletion frequencies averaged across carbon 
sources. The counts for each carbon source correspond to the percentage of designs containing that reaction deletion. 
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considered as part of the original design. To examine this scenario, we 
randomly partitioned the product library into two evenly sized groups, 
and independently used each partition as input for ModCell-HPC. This 
was done in triplicates, each corresponding to a different random 
product partition. Hence, in each replicate there is a group of known 
products at the time of design and a group of unknown products. For the 
designs produced by ModCell-HPC, we computed their objective values 
and then compatibility towards unknown products, which we refer to as 
unknown compatibility of a design, a useful metric to understand the 
potential to re-purpose a given design. In contrast, known compatibility is 
the compatibility towards known products at the time of design, simply 
referred to as compatibility. The analysis of unknown compatibility of a 
new production module with an existing modular cell design is similar to 
the concept of degree of coupling that was previously introduced in 
MODCELL based on a different computation framework (Trinh et al., 
2015). The total number of designs for each product group and the 
unknown compatibility distributions noticeably changed across repli-
cates (Fig. 6 a). This result reveals the important effect of known 
products on the resulting designs, which can be further explored to 
identify “representative products” that can capture the necessary 
metabolic phenotypes required for certain product families. Remark-
ably, there was a high correlation between known and unknown 
compatibility of a given design (Fig. 6 b-d). Experimental support for 
this interesting phenomenon are modular cells engineered with similar 
genetic modifications for enhanced cell biomass (Trinh et al., 2006), 
ethanol (Wilbanks et al., 2017; Trinh et al., 2008), iso (butanol) (Trinh 
et al., 2011; Trinh, 2012; Shen et al., 2011), and butyrate esters (Layton 
and Trinh, 2014). Hence, highly compatible designs are likely better 
suited to be re-purposed towards unknown products. 

3.4.2. Deletion reactions that remove major fermentation byproducts and 
alter redox metabolism have the highest contribution towards unknown 
compatibility 

To identify the specific genetic intervention strategies that 
contribute to the unknown compatibility of a design, we defined the 
unknown compatibility contribution of deletion reaction j (uccj) as 

follows: 

uccj =

∑

h∈ℍj

uh

|ℍ|
for all j ∈ ℂ (14)  

where ℍj is the subset of designs from a ModCell-HPC solution (Pareto 
set ℍ) containing deletion reaction j, and uh is the unknown compati-
bility of design h. We computed ucc for all 3 replicates and examined the 
top 10 sorted by mean value (Table 3). The main contributors towards 
unknown compatibility were removal of major fermentative byproducts 
(lactate, ethanol, and acetate) followed by manipulation of redox 
pathways (THD2pp, FLDR2, MDH) and metabolic branch points (TKT2, 
PPC). Indeed, byproduct removal strategies are the most common across 
the metabolic engineering literature (Winkler et al., 2015). Strain 
re-purposing could be further explored with algorithms specialized for 
this task, e.g., by identifying module reactions in the unknown modules 
or using the existing strain as a starting point to identify genetic ma-
nipulations instead of a wild-type strain. In our analysis, we have 
identified that high modular cell compatibility and certain reaction 

Fig. 6. Compatibility towards unknown products in 3 random even partitions of the product library. (a) Distribution of unknown compatibility, where n corresponds 
to the number of designs in each case. (b–d) Comparison between unknown and known compatibilities of each design for each replicate, where r2 is the Pearson 
correlation coefficient. 

Table 3 
Top 10 reactions sorted by mean unknown compatibility contribution (ucc) 
among replicates (i.e., R.1, R.2, and R.3).  

ID Name ucc 

R. 1 R. 2 R. 3 Mean 

LDH_D D-lactate dehydrogenase 13.2 10.5 11.9 11.9 
ALCD2x Alcohol dehydrogenase (ethanol) 11.5 10.5 11.8 11.3 
PTAr Phosphotransacetylase 4.0 4.8 6.5 5.1 
ACALD Acetaldehyde dehydrogenase 

(acetylating) 
4.5 2.8 2.9 3.4 

THD2pp NAD(P) transhydrogenase 
(periplasm) 

4.7 2.4 2.2 3.1 

ACKr Acetate kinase 3.8 2.2 1.7 2.6 
FLDR2 Flavodoxin reductase (NADPH) 2.0 2.2 2.9 2.4 
TKT2 Transketolase 2.6 2.0 2.5 2.4 
PPC Phosphoenolpyruvate carboxylase 2.3 2.2 2.5 2.3 
MDH Malate dehydrogenase 2.7 1.1 2.3 2.0  
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deletions are positive indicators of compatibility towards unknown 
products. 

4. Conclusions 

In this study, we developed ModCell-HPC, a computational method 
to design modular cells compatible with hundreds of product synthesis 
modules. We applied ModCell-HPC to design E. coli modular cells with a 
product library of 161 endogenous metabolites. This resulted in many 
Pareto optimal designs for the production of these molecules, from 
which we identified three modular cells that include all compatible 
products. The designs feature strategies consistent with previous 
experimental studies aimed at optimizing production of a single product, 
reinforcing our confidence in the value of our simulations. Remarkably, 
the strategies not only include removal of major byproducts, but also 
modification of key metabolic branch-points. The modular cells were 
designed for growth-coupled production, which not only is expected to 
result in high product yields but also enables high-throughput pathway 
engineering approaches. Specifically, the modular cell can be simulta-
neously transformed with a module library to rapidly identify good 
candidates through adaptive laboratory evolution (Wilbanks et al., 
2017; Dragosits and Mattanovich, 2013). We also used ModCell-HPC to 
design modular cells that utilize different hexoses and pentoses as car-
bon sources. This investigation revealed the limitations of pentoses to-
wards coupling with certain products which might be addressed by 
redox cofactor engineering. Finally, we identified that high compati-
bility and certain reaction deletion are important features to re-purpose 
an existing modular cell towards new modules. Overall, ModCell-HPC is 
an effective tool to anlayze the modularity of biological systems and 
enable more efficient and generalizable design of modular cells and 
platform strains that have recently captured the interest of metabolic 
engineers and synthetic biologists (Nielsen and Keasling, 2016). 
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