

Design of Modular Cells by Goal Attainment Optimization

Sergio Garcia and Cong T. Trinh

Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN.

Presented at AIChE Annual Meeting 2019. Orlando, FL.

Outline

1. Introduction

- 1.1 Modular design in engineering
- 1.2 Applications and challenges in microbial catalysis

2. Modular Cell design tools

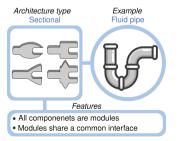
- 2.1 Conceptual formulation
- 2.2 Mathematical formulation: Multi-objective optimization
- 2.3 Design specification: Goal and blended formulations

3. Application Example

- 3.1 Input: 20 diverse products
- 3.2 Results: Universal design
- 3.3 Results: Modularity of core metabolic pathways

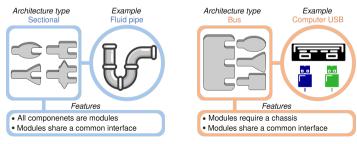
4. Summary

Definition:

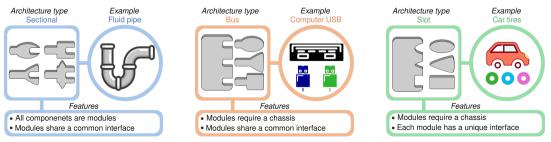

"A *module* is an essential and self-contained functional unit relative to the product of which it is part. The module has, relative to a system definition, standardized interfaces and interactions that allow composition of products by combination."

Definition:

"A *module* is an essential and self-contained functional unit relative to the product of which it is part. The module has, relative to a system definition, standardized interfaces and interactions that allow composition of products by combination."


Definition:

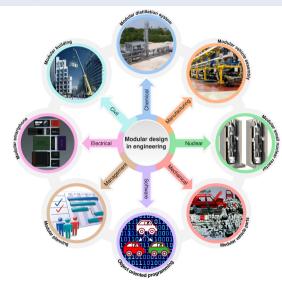
"A *module* is an essential and self-contained functional unit relative to the product of which it is part. The module has, relative to a system definition, standardized interfaces and interactions that allow composition of products by combination."

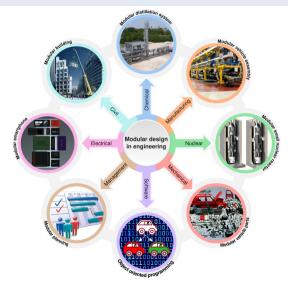

Definition:

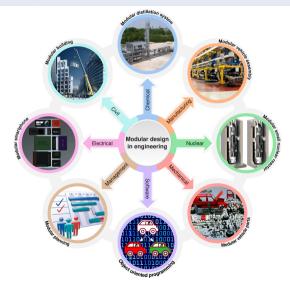
"A *module* is an essential and self-contained functional unit relative to the product of which it is part. The module has, relative to a system definition, standardized interfaces and interactions that allow composition of products by combination."

Definition:

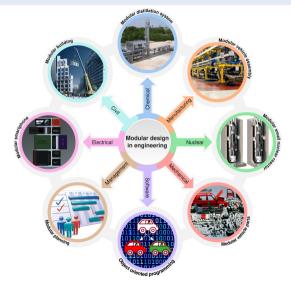
"A *module* is an essential and self-contained functional unit relative to the product of which it is part. The module has, relative to a system definition, standardized interfaces and interactions that allow composition of products by combination."



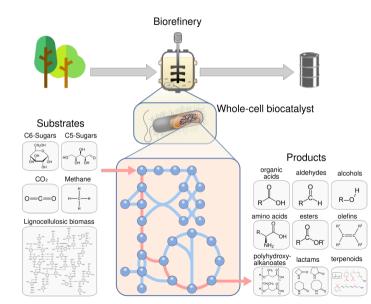




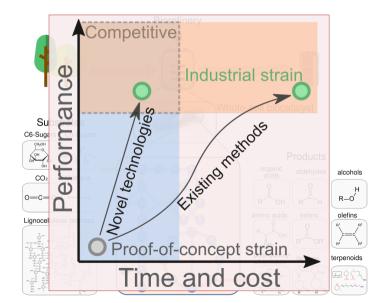
Driving forces for modularization:


 Innovation: Novel solutions to existing problems

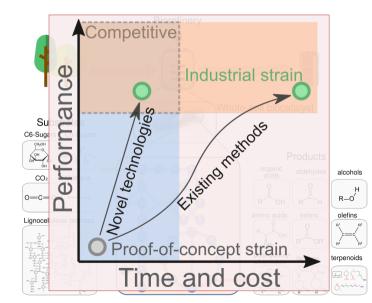
- Innovation: Novel solutions to existing problems
- Efficiency: Faster and cheaper product construction and maintenance



- Innovation: Novel solutions to existing problems
- Efficiency: Faster and cheaper product construction and maintenance
- Customizability: Better tailor a solution to specifics of the problem


- Innovation: Novel solutions to existing problems
- Efficiency: Faster and cheaper product construction and maintenance
- Customizability: Better tailor a solution to specifics of the problem
- Predictability: Robust system behavior across diverse scenarios

Applications and challenges in microbial catalysis


Metabolic engineering entails many promising applications, including bioremediation, medical treatment, biocatalysis.

Applications and challenges in microbial catalysis

- Metabolic engineering entails many promising applications, including bioremediation, medical treatment, biocatalysis.
- However, current engineering design-build-test cycles are too slow to make these applications widely feasible, even when proof-of-concept designs exist.

Applications and challenges in microbial catalysis

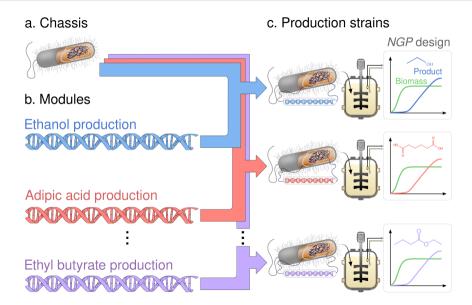
- Metabolic engineering entails many promising applications, including bioremediation, medical treatment, biocatalysis.
- However, current engineering design-build-test cycles are too slow to make these applications widely feasible, even when proof-of-concept designs exist.
- To address this challenge, we can apply proven modular design principles to biocatalyst engineering.

Outline

1. Introduction

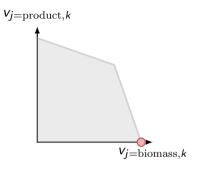
- 1.1 Modular design in engineering
- 1.2 Applications and challenges in microbial catalysis

2. Modular Cell design tools

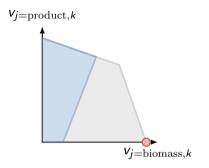

- 2.1 Conceptual formulation
- 2.2 Mathematical formulation: Multi-objective optimization
- 2.3 Design specification: Goal and blended formulations

3. Application Example

- 3.1 Input: 20 diverse products
- 3.2 Results: Universal design
- 3.3 Results: Modularity of core metabolic pathways


4. Summary

Principles of Modular Cell (ModCell) design

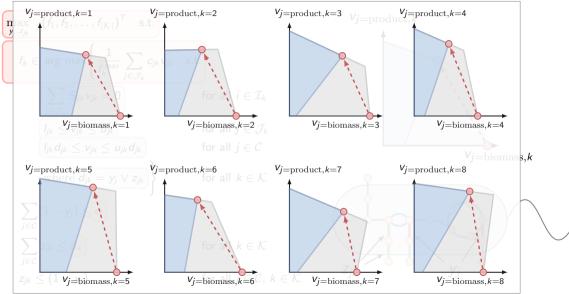

$$\begin{array}{ll} \max_{y_{j},z_{jk}} & \left(f_{1},f_{2},\ldots,f_{|\mathcal{K}|}\right)^{T} \quad \text{s.t.} \\ f_{k} \in \arg \max \Biggl\{ \frac{1}{f_{k}^{max}} \sum_{j \in \mathcal{J}_{k}} c_{jk} v_{jk} \quad \text{s.t.} \\ & \sum_{j \in \mathcal{J}_{k}} S_{ijk} v_{jk} = 0 & \text{for all } i \in \mathcal{I}_{k} \\ & l_{jk} \leq v_{jk} \leq u_{jk} & \text{for all } j \in \mathcal{J}_{k} \\ & l_{jk} d_{jk} \leq v_{jk} \leq u_{jk} d_{jk} & \text{for all } j \in \mathcal{C} \\ & \text{where } d_{jk} = y_{j} \lor z_{jk} \Biggr\} & \text{for all } k \in \mathcal{K} \\ & \sum_{j \in \mathcal{C}} (1 - y_{j}) \leq \alpha \\ & \sum_{j \in \mathcal{C}} z_{jk} \leq \beta_{k} & \text{for all } k \in \mathcal{K} \\ & z_{jk} \leq (1 - y_{j}) & \text{for all } j \in \mathcal{C}, \ k \in \mathcal{K} \end{array}$$

$$\begin{array}{ll} \displaystyle \max_{y_j,z_{jk}} & \left(f_1, f_2, \dots, f_{|\mathcal{K}|}\right)^T \quad \text{s.t.} \\ \hline f_k \in \arg \max \left\{ \frac{1}{f_k^{max}} \sum_{j \in \mathcal{J}_k} c_{jk} v_{jk} \quad \text{s.t.} \right. \\ \hline \int_{j \in \mathcal{J}_k} S_{ijk} v_{jk} = 0 & \text{for all } i \in \mathcal{I}_k \\ \hline I_{jk} \leq v_{jk} \leq u_{jk} & \text{for all } j \in \mathcal{J}_k \\ I_{jk} d_{jk} \leq v_{jk} \leq u_{jk} d_{jk} & \text{for all } j \in \mathcal{C} \\ \text{where } d_{jk} = y_j \lor z_{jk} \\ \hline \sum_{j \in \mathcal{C}} (1 - y_j) \leq \alpha \\ \sum_{j \in \mathcal{C}} z_{jk} \leq \beta_k & \text{for all } k \in \mathcal{K} \\ z_{jk} \leq (1 - y_j) & \text{for all } j \in \mathcal{C}, \ k \in \mathcal{K} \end{array}$$

7

$$\begin{array}{ll} \displaystyle\max_{y_j,z_{jk}} & \left(f_1,f_2,\ldots,f_{|\mathcal{K}|}\right)^T \quad \text{s.t.} \\ \hline f_k \in \arg \max \left\{ \frac{1}{f_k^{max}} \sum_{j \in \mathcal{J}_k} c_{jk} v_{jk} \quad \text{s.t.} \right. \\ & \left[\sum_{j \in \mathcal{J}_k} S_{ijk} v_{jk} = 0 & \text{for all } i \in \mathcal{I}_k \\ \hline l_{jk} \leq v_{jk} \leq u_{jk} & \text{for all } j \in \mathcal{J}_k \\ \hline l_{jk} d_{jk} \leq v_{jk} \leq u_{jk} d_{jk} & \text{for all } j \in \mathcal{C} \\ & \text{where } d_{jk} = y_j \lor z_{jk} \\ & \sum_{j \in \mathcal{C}} (1 - y_j) \leq \alpha \\ & \sum_{j \in \mathcal{C}} z_{jk} \leq \beta_k & \text{for all } k \in \mathcal{K} \\ & z_{ik} \leq (1 - y_i) & \text{for all } j \in \mathcal{C}, \\ \hline \end{array}$$

all $k \in \mathcal{K}$


for all $i \in C, k \in \mathcal{K}$

$$\begin{array}{c} \max_{y_{j},z_{jk}} & \left(f_{1},f_{2},\ldots,f_{|\mathcal{K}|}\right)^{T} \text{ s.t.} \\ \hline f_{k} \in \arg \max\left\{\frac{1}{f_{k}^{max}}\sum_{j \in \mathcal{J}_{k}}c_{jk}v_{jk} \text{ s.t.}\right\} \\ \hline \int_{j \in \mathcal{J}_{k}}S_{ijk}v_{jk} = 0 & \text{for all } i \in \mathcal{I}_{k} \\ \hline I_{jk} \leq v_{jk} \leq u_{jk} & \text{for all } j \in \mathcal{J}_{k} \\ I_{jk}d_{jk} \leq v_{jk} \leq u_{jk}d_{jk} & \text{for all } j \in \mathcal{C} \\ \text{where } d_{jk} = y_{j} \lor z_{jk} \\ \hline \sum_{j \in \mathcal{C}}(1-y_{j}) \leq \alpha \\ \sum_{j \in \mathcal{C}}z_{jk} \leq h_{k} & \text{for all } k \in \mathcal{K} \\ z_{jk} \leq (1-y_{j}) & \text{for all } j \in \mathcal{C}, k \in \mathcal{K} \end{array}$$

$$\begin{array}{ll} \max_{y_j, z_{jk}} & \left(f_1, f_2, \dots, f_{|\mathcal{K}|}\right)^T \text{ s.t.} \\ \hline f_k \in \arg \max \left\{ \frac{1}{f_k^{max}} \sum_{j \in \mathcal{J}_k} c_{jk} v_{jk} \text{ s.t.} \right\} \\ \hline \sum_{j \in \mathcal{J}_k} S_{ijk} v_{jk} = 0 & \text{for all } i \in \mathcal{I}_k \\ \hline I_{jk} \leq v_{jk} \leq u_{jk} & \text{for all } j \in \mathcal{J}_k \\ \hline I_{jk} d_{jk} \leq v_{jk} \leq u_{jk} d_{jk} & \text{for all } j \in \mathcal{C} \\ \text{where } d_{jk} = y_j \lor z_{jk} \right\} & \text{for all } k \in \mathcal{K} \\ \hline \sum_{j \in \mathcal{C}} (1 - y_j) \leq \alpha \\ \sum_{j \in \mathcal{C}} z_{jk} \leq \beta_k & \text{for all } k \in \mathcal{K} \\ z_{jk} \leq (1 - y_j) & \text{for all } j \in \mathcal{C}, \ k \in \mathcal{K} \end{array}$$

$$\begin{array}{ll} \max_{y_{j},z_{jk}} & \left(f_{1},f_{2},\ldots,f_{|\mathcal{K}|}\right)^{T} \text{ s.t.} \\ \hline f_{k} \in \arg \max\left\{\frac{1}{f_{k}^{\max}}\sum_{j\in\mathcal{J}_{k}}c_{jk}v_{jk} \text{ s.t.}\right\} \\ \hline \int_{j\in\mathcal{J}_{k}}S_{ijk}v_{jk} = 0 & \text{for all } i\in\mathcal{I}_{k} \\ \hline I_{jk} \leq v_{jk} \leq u_{jk} & \text{for all } j\in\mathcal{J}_{k} \\ \hline I_{jk}d_{jk} \leq v_{jk} \leq u_{jk}d_{jk} & \text{for all } j\in\mathcal{J}_{k} \\ \hline I_{jk}d_{jk} \leq v_{jk} \leq u_{jk}d_{jk} & \text{for all } k\in\mathcal{K} \\ \\ \\ \\ \sum_{j\in\mathcal{C}}(1-y_{j}) \leq \alpha \\ \\ \\ \\ \\ \\ z_{jk} \leq (1-y_{j}) & \text{for all } k\in\mathcal{K} \\ \end{array}$$

$$\begin{array}{ll} \max_{y_{j},z_{jk}} \left(f_{1},f_{2},\ldots,f_{|\mathcal{K}|}\right)^{T} \text{ s.t.} \\ \hline f_{k} \in \arg \max\left\{\frac{1}{f_{k}^{max}}\sum_{j \in \mathcal{J}_{k}}c_{jk}v_{jk} \text{ s.t.}\right\} \\ \hline f_{k} \in \arg \max\left\{\frac{1}{f_{k}^{max}}\sum_{j \in \mathcal{J}_{k}}c_{jk}v_{jk} \text{ s.t.}\right\} \\ \hline \int_{j \in \mathcal{J}_{k}}S_{ijk}v_{jk} = 0 & \text{for all } i \in \mathcal{I}_{k} \\ \hline I_{jk} \leq v_{jk} \leq u_{jk} & \text{for all } j \in \mathcal{J}_{k} \\ I_{jk}d_{jk} \leq v_{jk} \leq u_{jk}d_{jk} & \text{for all } j \in \mathcal{C} \\ \text{where } d_{jk} = y_{j} \lor z_{jk} \\ \hline \sum_{j \in \mathcal{C}}(1 - y_{j}) \leq \alpha \\ \sum_{j \in \mathcal{C}}z_{jk} \leq \beta_{k} & \text{for all } k \in \mathcal{K} \\ z_{jk} \leq (1 - y_{j}) & \text{for all } j \in \mathcal{C}, \ k \in \mathcal{K} \end{array}$$

Blended formulation:

$$\max \quad \sum_{k \in \mathcal{K}} a_k f'_k \quad \text{s.t.} \ f' \in \Omega \tag{1}$$

Blended formulation:

$$\max \quad \sum_{k \in \mathcal{K}} a_k f'_k \quad \text{s.t. } f' \in \Omega$$
 (1)

Module priority, a_k determined by criteria such as product market value or "pathway readiness level"

Blended formulation.

$$\max \quad \sum_{k \in \mathcal{K}} a_k f'_k \quad \text{s.t. } f' \in \Omega$$
 (1)

- Module priority, a_k , determined by criteria such as product market value or "pathway readiness level"
- Goal attainment formulation:

min
$$\sum_{k \in \mathcal{K}} (a_k^+ \delta_k^+ + a_k^- \delta_k^-)$$
(2)

s.t.

$$f'_k + \delta^+_k - \delta^-_k = g_k \quad \forall k \in \mathcal{K}$$
(3)

$$\begin{aligned} \delta_k^+, \delta_k^- \ge 0 & \forall k \in \mathcal{K} \\ f' \in \Omega \end{aligned} \tag{4}$$

$$T \in \Omega$$
 (5)

Blended formulation:

$$\max \quad \sum_{k \in \mathcal{K}} a_k f'_k \quad \text{s.t. } f' \in \Omega$$
 (1)

- Module priority, a_k, determined by criteria such as product market value or "pathway readiness level"
- Goal attainment formulation:

min
$$\sum_{k \in \mathcal{K}} (a_k^+ \delta_k^+ + a_k^- \delta_k^-)$$
(2)

s.t.

f

$$f'_{k} + \delta^{+}_{k} - \delta^{-}_{k} = g_{k} \quad \forall k \in \mathcal{K}$$
(3)

$$\delta_k^+, \delta_k^- \ge 0 \qquad \quad \forall k \in \mathcal{K}$$
 (4)

$$T' \in \Omega$$
 (5)

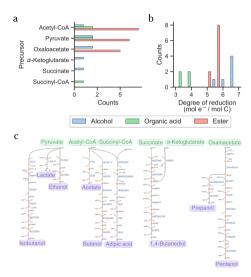
ldentification of the modular cell *compatible* (i.e., a module k is said to be compatible if $f'_k \ge g_k$) with the largest number of modules

Outline

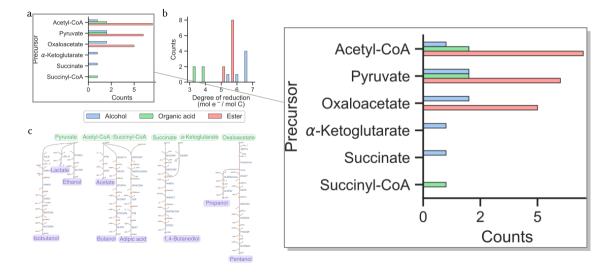
1. Introduction

- 1.1 Modular design in engineering
- 1.2 Applications and challenges in microbial catalysis

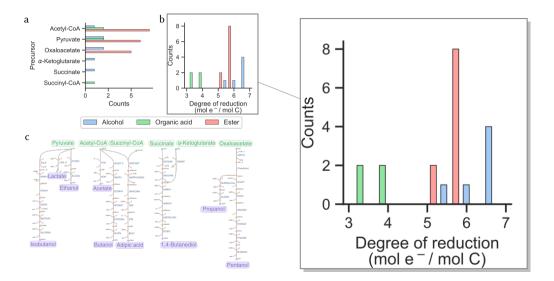
2. Modular Cell design tools

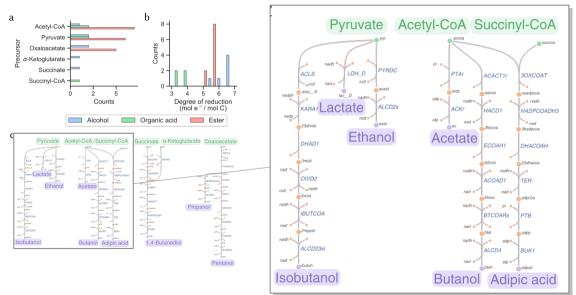

- 2.1 Conceptual formulation
- 2.2 Mathematical formulation: Multi-objective optimization
- 2.3 Design specification: Goal and blended formulations

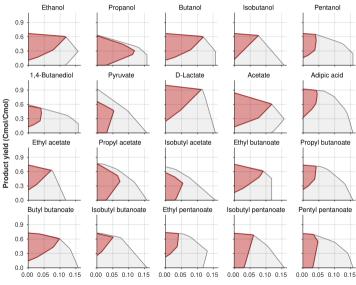
3. Application Example


- 3.1 Input: 20 diverse products
- 3.2 Results: Universal design
- 3.3 Results: Modularity of core metabolic pathways

4. Summary

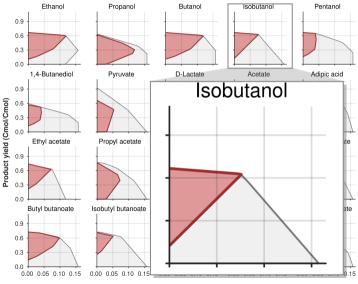

Input: 20 diverse products


Input: 20 diverse products


Input: 20 diverse products

Input: 20 diverse products

Results: Universal design

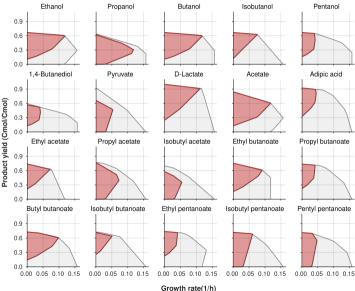


Phenotypic spaces:

 Represent feasible metabolic states according to stoichiometric constraints

- Gray region: Wild type + production module
 - Red region: Designed chassis + production module

Results: Universal design



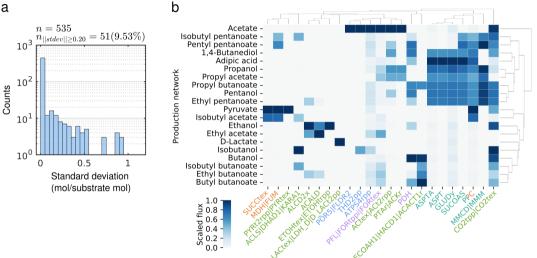
Phenotypic spaces:

 Represent feasible metabolic states according to stoichiometric constraints

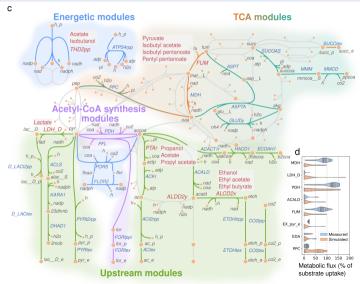
- Gray region: Wild type + production module
- Red region: Designed chassis + production module

Results: Universal design

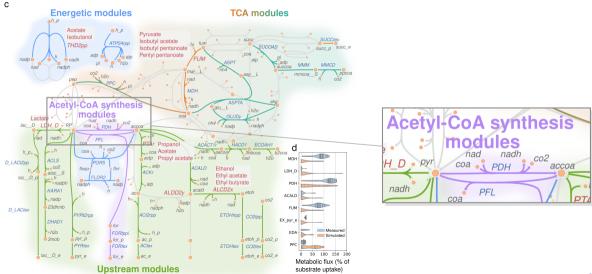
Phenotypic spaces:

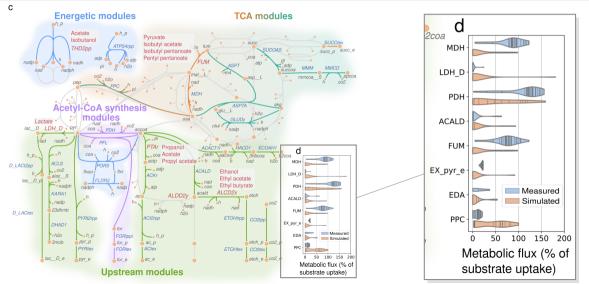

Represent feasible metabolic states accordstoichiometric ing to constraints

- Grav region: Wild type + production module
- Red region: Designed chassis produc-+tion module


The universal design leads to high product yields at the maximum growth rate for all combinations of chassis and production modules.


Identification of chassis metabolic interfaces


а



Reaction

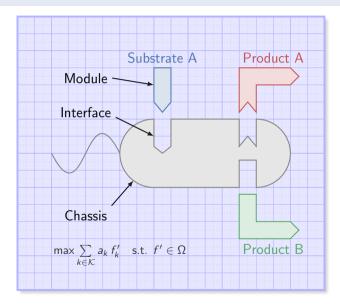
Outline

1. Introduction

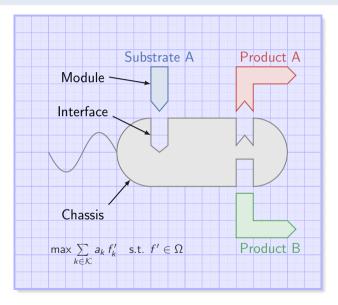
- 1.1 Modular design in engineering
- 1.2 Applications and challenges in microbial catalysis

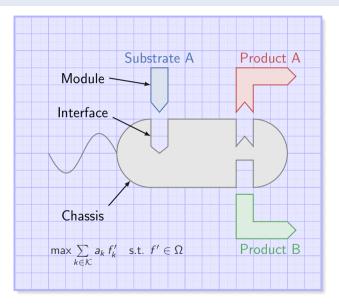
2. Modular Cell design tools

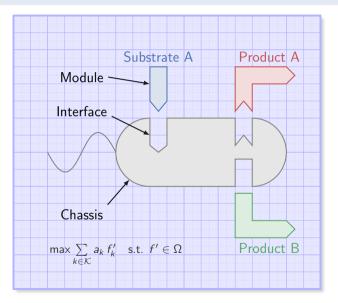
- 2.1 Conceptual formulation
- 2.2 Mathematical formulation: Multi-objective optimization
- 2.3 Design specification: Goal and blended formulations

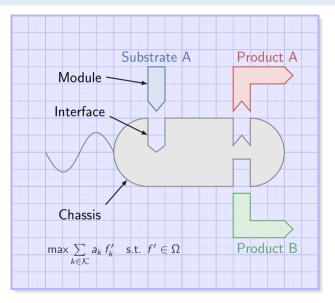

3. Application Example

- 3.1 Input: 20 diverse products
- 3.2 Results: Universal design
- 3.3 Results: Modularity of core metabolic pathways


4. Summary

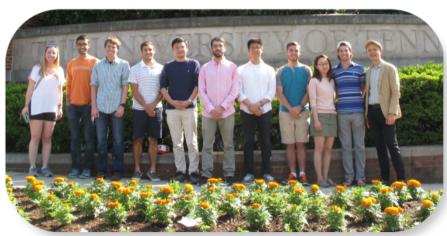

 Develop modular cell design principles to accelerate biocatalyst R&D cycles


- Develop modular cell design principles to accelerate biocatalyst R&D cycles
- Propose modular cell design as a multi-objective optimization problem (MOP)


- Develop modular cell design principles to accelerate biocatalyst R&D cycles
- Propose modular cell design as a multi-objective optimization problem (MOP)
- Develop blended and goal attainment formulations to solve MOP

- Develop modular cell design principles to accelerate biocatalyst R&D cycles
- Propose modular cell design as a multi-objective optimization problem (MOP)
- Develop blended and goal attainment formulations to solve MOP
- Design a universal chassis compatible with a diverse group of products

- Develop modular cell design principles to accelerate biocatalyst R&D cycles
- Propose modular cell design as a multi-objective optimization problem (MOP)
- Develop blended and goal attainment formulations to solve MOP
- Design a universal chassis compatible with a diverse group of products
- Identify features of bacterial metabolism that enable universal modular design


Acknowledgements

Funding Sources

Trinh Lab

References

- Garcia, S. & Trinh, C. T. Multiobjective strain design: A framework for modular cell engineering. *Metabolic Engineering* **51** (2019).
- Garcia, S. & Trinh, C. T. Modular design: Implementing proven engineering principles in biotechnology. *Biotechnology Advances* **37**, 107403 (2019).
- Garcia, S. & Trinh, C. T. Harnessing natural modularity of cellular metabolism to design a modular chassis cell for a diverse class of products by using goal attainment optimization. *bioRxiv*. eprint: https://www.biorxiv.org/content/early/2019/08/28/748350.full.pdf (2019).

All programs and data analysis scripts are available on Github with detailed documentation to enable reproducibility and further use:

https://github.com/trinhlab