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Modular design concepts

Definition:

“A module is an essential and self-contained functional unit relative
to the product of which it is part. The module has, relative to a
system definition, standardized interfaces and interactions that allow
composition of products by combination.”

Types of modular architecture:
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I Innovation: Novel solutions to
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I Efficiency: Faster and cheaper
product construction and
maintenance

I Customizability: Better tailor
a solution to specifics of the
problem

I Predictability: Robust system
behavior across diverse scenar-
ios
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Applications and challenges in microbial catalysis

I Metabolic engineering en-
tails many promising appli-
cations, including bioreme-
diation, medical treatment,
biocatalysis.

I However, current engineer-
ing design-build-test cycles
are too slow to make these
applications widely feasible,
even when proof-of-concept
designs exist.

I To address this challenge,
we can apply proven modu-
lar design principles to bio-
catalyst engineering.
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Principles of Modular Cell (ModCell) design
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Mathematical formulation of ModCell

max
yj ,zjk

(f1, f2, . . . , f|K|)
T s.t.

fk ∈ arg max

{
1

f max
k

∑
j∈Jk

cjkvjk s.t.

∑
j∈Jk

Sijkvjk = 0 for all i ∈ Ik

ljk ≤ vjk ≤ ujk for all j ∈ Jk

ljkdjk ≤ vjk ≤ ujkdjk for all j ∈ C

where djk = yj ∨ zjk

}
for all k ∈ K∑

j∈C

(1− yj) ≤ α∑
j∈C

zjk ≤ βk for all k ∈ K

zjk ≤ (1− yj) for all j ∈ C, k ∈ K

vj=product,k

vj=biomass,k

yjzjk



7

Mathematical formulation of ModCell

max
yj ,zjk

(f1, f2, . . . , f|K|)
T s.t.

fk ∈ arg max

{
1

f max
k

∑
j∈Jk

cjkvjk s.t.

∑
j∈Jk

Sijkvjk = 0 for all i ∈ Ik

ljk ≤ vjk ≤ ujk for all j ∈ Jk

ljkdjk ≤ vjk ≤ ujkdjk for all j ∈ C

where djk = yj ∨ zjk

}
for all k ∈ K∑

j∈C

(1− yj) ≤ α∑
j∈C

zjk ≤ βk for all k ∈ K

zjk ≤ (1− yj) for all j ∈ C, k ∈ K

vj=product,k

vj=biomass,k

yjzjk



7

Mathematical formulation of ModCell

max
yj ,zjk

(f1, f2, . . . , f|K|)
T s.t.

fk ∈ arg max

{
1

f max
k

∑
j∈Jk

cjkvjk s.t.

∑
j∈Jk

Sijkvjk = 0 for all i ∈ Ik

ljk ≤ vjk ≤ ujk for all j ∈ Jk

ljkdjk ≤ vjk ≤ ujkdjk for all j ∈ C

where djk = yj ∨ zjk

}
for all k ∈ K∑

j∈C

(1− yj) ≤ α∑
j∈C

zjk ≤ βk for all k ∈ K

zjk ≤ (1− yj) for all j ∈ C, k ∈ K

vj=product,k

vj=biomass,k

yjzjk



7

Mathematical formulation of ModCell

max
yj ,zjk

(f1, f2, . . . , f|K|)
T s.t.

fk ∈ arg max

{
1

f max
k

∑
j∈Jk

cjkvjk s.t.

∑
j∈Jk

Sijkvjk = 0 for all i ∈ Ik

ljk ≤ vjk ≤ ujk for all j ∈ Jk

ljkdjk ≤ vjk ≤ ujkdjk for all j ∈ C

where djk = yj ∨ zjk

}
for all k ∈ K∑

j∈C

(1− yj) ≤ α∑
j∈C

zjk ≤ βk for all k ∈ K

zjk ≤ (1− yj) for all j ∈ C, k ∈ K

vj=product,k

vj=biomass,k

yjzjk



7

Mathematical formulation of ModCell

max
yj ,zjk

(f1, f2, . . . , f|K|)
T s.t.

fk ∈ arg max

{
1

f max
k

∑
j∈Jk

cjkvjk s.t.

∑
j∈Jk

Sijkvjk = 0 for all i ∈ Ik

ljk ≤ vjk ≤ ujk for all j ∈ Jk

ljkdjk ≤ vjk ≤ ujkdjk for all j ∈ C

where djk = yj ∨ zjk

}
for all k ∈ K∑

j∈C

(1− yj) ≤ α∑
j∈C

zjk ≤ βk for all k ∈ K

zjk ≤ (1− yj) for all j ∈ C, k ∈ K

vj=product,k

vj=biomass,k

yj

zjk



7

Mathematical formulation of ModCell

max
yj ,zjk

(f1, f2, . . . , f|K|)
T s.t.

fk ∈ arg max

{
1

f max
k

∑
j∈Jk

cjkvjk s.t.

∑
j∈Jk

Sijkvjk = 0 for all i ∈ Ik

ljk ≤ vjk ≤ ujk for all j ∈ Jk

ljkdjk ≤ vjk ≤ ujkdjk for all j ∈ C

where djk = yj ∨ zjk

}
for all k ∈ K∑

j∈C

(1− yj) ≤ α∑
j∈C

zjk ≤ βk for all k ∈ K

zjk ≤ (1− yj) for all j ∈ C, k ∈ K

vj=product,k

vj=biomass,k

yjzjk



7

Mathematical formulation of ModCell

max
yj ,zjk

(f1, f2, . . . , f|K|)
T s.t.

fk ∈ arg max

{
1

f max
k

∑
j∈Jk

cjkvjk s.t.

∑
j∈Jk

Sijkvjk = 0 for all i ∈ Ik

ljk ≤ vjk ≤ ujk for all j ∈ Jk

ljkdjk ≤ vjk ≤ ujkdjk for all j ∈ C

where djk = yj ∨ zjk

}
for all k ∈ K∑

j∈C

(1− yj) ≤ α∑
j∈C

zjk ≤ βk for all k ∈ K

zjk ≤ (1− yj) for all j ∈ C, k ∈ K

vj=product,k

vj=biomass,k

yjzjk



7

Mathematical formulation of ModCell

max
yj ,zjk

(f1, f2, . . . , f|K|)
T s.t.

fk ∈ arg max

{
1

f max
k

∑
j∈Jk

cjkvjk s.t.

∑
j∈Jk

Sijkvjk = 0 for all i ∈ Ik

ljk ≤ vjk ≤ ujk for all j ∈ Jk

ljkdjk ≤ vjk ≤ ujkdjk for all j ∈ C

where djk = yj ∨ zjk

}
for all k ∈ K∑

j∈C

(1− yj) ≤ α∑
j∈C

zjk ≤ βk for all k ∈ K

zjk ≤ (1− yj) for all j ∈ C, k ∈ K

vj=product,k

vj=biomass,k

yjzjk

vj=product,k=1

vj=biomass,k=1

vj=product,k=2

vj=biomass,k=2

vj=product,k=3

vj=biomass,k=3

vj=product,k=4

vj=biomass,k=4

vj=product,k=5

vj=biomass,k=5

vj=product,k=6

vj=biomass,k=6

vj=product,k=7

vj=biomass,k=7

vj=product,k=8

vj=biomass,k=8



8

Design specification: Goal and blended formulations

Blended formulation:
max

∑
k∈K

ak f
′
k s.t. f ′ ∈ Ω (1)

I Module priority, ak , determined by criteria such as product market value or “pathway
readiness level”

Goal attainment formulation:

min
∑
k∈K

(a+k δ
+
k + a−k δ

−
k ) (2)

s.t.

f ′k + δ+k − δ
−
k = gk ∀k ∈ K (3)

δ+k , δ
−
k ≥ 0 ∀k ∈ K (4)

f ′ ∈ Ω (5)

I Identification of the modular cell compatible (i.e., a module k is said to be compatible if
f ′k ≥ gk) with the largest number of modules
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Results: Universal design

Phenotypic spaces:

I Represent feasible
metabolic states accord-
ing to stoichiometric
constraints

I Gray region: Wild type +
production module

I Red region: Designed
chassis + produc-
tion module

The universal design leads to

high product yields at the

maximum growth rate for all

combinations of chassis and

production modules.
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Identification of chassis metabolic interfaces
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Natural modularity and flexibility of core metabolism enables universal
design
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Summary

I Develop modular cell design
principles to accelerate biocat-
alyst R&D cycles

I Propose modular cell design as
a multi-objective optimization
problem (MOP)

I Develop blended and goal at-
tainment formulations to solve
MOP

I Design a universal chassis
compatible with a diverse
group of products

I Identify features of bacterial
metabolism that enable uni-
versal modular design

max
∑
k∈K

ak f
′
k s.t. f ′ ∈ Ω

Substrate A Product A

Product B

Chassis

Interface

Module



15

Summary

I Develop modular cell design
principles to accelerate biocat-
alyst R&D cycles

I Propose modular cell design as
a multi-objective optimization
problem (MOP)

I Develop blended and goal at-
tainment formulations to solve
MOP

I Design a universal chassis
compatible with a diverse
group of products

I Identify features of bacterial
metabolism that enable uni-
versal modular design

max
∑
k∈K

ak f
′
k s.t. f ′ ∈ Ω

Substrate A Product A

Product B

Chassis

Interface

Module



15

Summary

I Develop modular cell design
principles to accelerate biocat-
alyst R&D cycles

I Propose modular cell design as
a multi-objective optimization
problem (MOP)

I Develop blended and goal at-
tainment formulations to solve
MOP

I Design a universal chassis
compatible with a diverse
group of products

I Identify features of bacterial
metabolism that enable uni-
versal modular design

max
∑
k∈K

ak f
′
k s.t. f ′ ∈ Ω

Substrate A Product A

Product B

Chassis

Interface

Module



15

Summary

I Develop modular cell design
principles to accelerate biocat-
alyst R&D cycles

I Propose modular cell design as
a multi-objective optimization
problem (MOP)

I Develop blended and goal at-
tainment formulations to solve
MOP

I Design a universal chassis
compatible with a diverse
group of products

I Identify features of bacterial
metabolism that enable uni-
versal modular design

max
∑
k∈K

ak f
′
k s.t. f ′ ∈ Ω

Substrate A Product A

Product B

Chassis

Interface

Module



15

Summary

I Develop modular cell design
principles to accelerate biocat-
alyst R&D cycles

I Propose modular cell design as
a multi-objective optimization
problem (MOP)

I Develop blended and goal at-
tainment formulations to solve
MOP

I Design a universal chassis
compatible with a diverse
group of products

I Identify features of bacterial
metabolism that enable uni-
versal modular design

max
∑
k∈K

ak f
′
k s.t. f ′ ∈ Ω

Substrate A Product A

Product B

Chassis

Interface

Module



15

Summary

I Develop modular cell design
principles to accelerate biocat-
alyst R&D cycles

I Propose modular cell design as
a multi-objective optimization
problem (MOP)

I Develop blended and goal at-
tainment formulations to solve
MOP

I Design a universal chassis
compatible with a diverse
group of products

I Identify features of bacterial
metabolism that enable uni-
versal modular design

max
∑
k∈K

ak f
′
k s.t. f ′ ∈ Ω

Substrate A Product A

Product B

Chassis

Interface

Module



16

Acknowledgements



17

References

Garcia, S. & Trinh, C. T. Multiobjective strain design: A framework for modular
cell engineering. Metabolic Engineering 51 (2019).

Garcia, S. & Trinh, C. T. Modular design: Implementing proven engineering prin-
ciples in biotechnology. Biotechnology Advances 37, 107403 (2019).

Garcia, S. & Trinh, C. T. Harnessing natural modularity of cellular metabolism to
design a modular chassis cell for a diverse class of products by using goal attainment
optimization. bioRxiv. eprint: https://www.biorxiv.org/content/early/

2019/08/28/748350.full.pdf (2019).

All programs and data analysis scripts are available on
Github with detailed documentation to enable reproducibil-
ity and further use:
https://github.com/trinhlab

https://www.biorxiv.org/content/early/2019/08/28/748350.full.pdf
https://www.biorxiv.org/content/early/2019/08/28/748350.full.pdf
https://github.com/trinhlab

	Introduction
	Modular design in engineering
	Applications and challenges in microbial catalysis

	Modular Cell design tools
	Conceptual formulation
	Mathematical formulation: Multi-objective optimization
	Design specification: Goal and blended formulations

	Application Example
	Input: 20 diverse products
	Results: Universal design
	Results: Modularity of core metabolic pathways

	Summary

