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Abstract: Novel high-throughput techniques such as transcriptomics, proteomics, and metabolomics, serve to produce massive amounts of data from biological systems. This explosion in our ability to produce data

has not been matched by our ability to analyze it. We propose a method that serves to refine the prediction capability of genome scale models of metabolism from proteomics data. Our method uses protein

abundances to effectively reduce the solution space of the model, under the sole assumption that reaction fluxes are to be minimal while satisfying the cellular objective (e.g. growth rate maximization). We validated

our method by examining randomly sampled reaction flux distributions of the genome scale model of Clostrium thermocellum iAT601, constrained with proteomic data, and measured reaction fluxes for the wild type

and 𝚫hydG-𝚫ech strains. The uncertainty of the model was effectively reduced in both parent and mutant strains. Additionally, many of the central metabolism estimated flux changes between strains are in good

agreement with previous studies3. We expect the enhanced predictive accuracy of the model to drive in silico metabolic engineering for the production of biofuels and chemicals.
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Analysis of Flux Distributions of Clostridium thermocellum

Mutants Through Physiological Characterization and 

Proteomics

Basics of metabolic network modeling

How is a metabolic network model built?

S ∙ r = 0

lb≤ r ≤ ub

r1 r2 r3 r4 r5 r6r r7 r8r r9

A 1 -1 0 0 -1 0 0 0 0

B 0 0 0 0 1 -1 -1 -1 0

C 0 1 -1 0 0 1 0 0 0

D 0 0 1 0 0 0 0 0 -1

P 0 0 1 -1 0 0 2 0 0

S =

r = [r1 r2 r3 r4 r5 r6r r7 r8r r9 r10 r11]
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At quasi-steady state:

Many reactions bounds (lb,ub) are not known, therefore there are many flux

distributions(r) that can satisfy the model equations. We need to constraint the

reaction bounds using experimental data.

Problem:

The reaction rate is described by:

ri = αi ∙ Ei

• Ei is the enzyme concentration

• αi is a condition specific function, which depends on metabolite concentrations,

temperature, pH, post-translational regulation, etc.

The enzyme concentration is directly proportional by some constant β
i

to the net protein

abundance for each reaction:

• Define an upper bound γ ≥ αi ∀ iunconstrained such that ri ≤ γ ∙ Ai.

• In order to find γ , invoke a parsimony assumption, whereby the cell satisfies its

biological objective ( e.g. maximization of growth rate) with the smallest fluxes possible:

• Experimentally constrained3 bounds are not modified.

• Bounds of reactions that have a net abundance of zero are not changed, since a net

abundance of zero can be due to a failure in detecting the corresponding proteins.

min γ
s. t.

𝐒 ∙ 𝐫 = 0
−γ ∙ Ai ≤ ri ≤ γ ∙ Ai ∀ ireversible
0 ≤ ri ≤ γ ∙ Ai ∀ iforward
−γ ∙ Ai ≤ ri ≤ 0 ∀ ibackward
lbi ≤ ri ≤ ubi ∀ iexperimental , izeroAbundance

maxbiomass flux
s. t.

Ei ∙ βi = Ai =  

j=1

genes coding reaction i

protein abundance j

Major flux differences of parent and 𝜟hydG-𝜟ech strains after proteomics integration

References

How can the model predict reaction fluxes?

• Loopless Flux balance analysis1:

• Sampling of the solution space2:

Maximize Biomass flux

Subject to:

S ∙ r = 0

lb≤ r ≤ ub

loop law constraints

Obtain a set of flux distributions {r},

homogenously distributed in the space

enclosed by:

S ∙ r = 0

lb≤ r ≤ ub

Flux balance analysis yields a flux value for each reaction in the network

Random sampling yields a set of possible flux values for each reaction

in the network.

The solution space is

a convex polyhedron

• We developed a theory to enhance the predictive capability of metabolic models by

integration of proteomics into a genome scale model.

• The theory was validated using experimental data for C. thermocellum mutants.

• We expect this method to drive metabolic engineering efforts in general, and for the

production of next generation biofuels and chemicals in Clostridium thermocellum

lb and ub are the upper

and lower bound for the

reaction fluxes.

Important reactions

1-Schellenberger et. al (2011). Biophysical journal, 100(3), 544-553.
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Experimental data for parent and 𝚫hydG-𝚫
ech strains3
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Associated genes

iAT601 genome scale model4 of C. thermocellum DSM 1313

How does the proteomic data relate to the model?

Number of protein genes in DSM1313: 2911 

225 genes,

183 reactions 

Genome Scale Model Proteomics data set

376 genes,

520 reactions

630 genes

Effects of the proteomics constraints in the solution space

Theory validation

ΔhydG-ΔechParent

• 601 genes. • 872 reactions. • 81 pathways.

Protein abundance and randomly sampled flux distributions indicate 

potential regulation mechanism5.

Theory of proteomics data integration

Relation between protein abundance and reaction flux
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Mapping of proteomics data to the model

Enzymes Showing Transcriptional 

Regulation (P > 0.6)
Fructose bisphosphate aldolase

ATP phosphoribosyltransferase

UDP-glucuronate 5-epimerase

ADP-ribose ribophosphohydrolase

Enzymes Showing Metabolic Regulation 

(P > 0.9)
Iron(III) Uptake

hydrogen:ferredoxin oxidoreductase

Lumped Cellulosome Term

ATP:D-ribose-5-phosphate diphosphotransferase

Fatty acid synthase

ATP:D-glucose 6-phosphotransferase

Glutamate racemase

Isoleucine transport

UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:(L)-

meso-2,6-diaminoheptanedioate gamma-ligase 

(ADP-forming)

• Absorb βi in αi such that ri = αi ∙ Ai

Finding unknown parameters
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Measured fluxes Loop reduction Proteomics

Pathway reaction name

Parent flux (mmol/gCDW/s)
ΔhydG-Δech

flux (mmol/gCDW/s)

mean stdev min max

Protein 

abundance

(A.U.)

mean stdev min max

Protein 

abundance

(A.U.)

Redox

RNF-Ferredoxin:NAD

oxidoreductase
0.21 0.59 -1.13 2.47 53.4 3.89 0.01 3.80 3.93 48.9

NfnAB 0.25 0.53 -1.46 2.68 26.8 1.60 0.01 1.57 1.64 27.2

hydrogen:NADP+ 

oxidoreductase
3.86 1.03 -0.27 7.60 11.1 0.00 0.00 0.00 0.00 10.5

Pyruvate

Malate dehydrogenase -0.73 0.56 -3.78 0.13 14.8 0.08 0.01 0.02 0.08 15.8

Pyruvate formate lyase 1.78 0.00 1.78 1.78 14.6 2.69 0.01 2.68 2.75 15.4

(S)-malate hydro-lyase

(fumarate-forming)
-0.09 0.03 -0.13 0.03 23.3 -0.08 0.00 -0.08 -0.08 23.6

oxaloacetate carboxy-lyase 

(pyruvate-forming)
0.78 0.58 0.00 3.88 11.7 6.68 0.01 6.63 6.70 12.4

'L-Serine:pyruvate 

aminotransferase'
-1.46 0.98 -3.60 0.00 0.0 -1.95 1.36 -5.10 0.00 0.0

'Malate transport' 0.04 0.03 0.00 0.16 0.0 0.00 0.00 0.00 0.00 0.0

'Fumarate transport' 0.04 0.03 0.00 0.16 0.0 0.00 0.00 0.00 0.00 0.0

'Pyruvate transport' 0.18 0.02 0.13 0.20 0.0 0.00 0.00 0.00 0.00 0.0

Acetate

'Acetate:CoA ligase (AMP-

forming)'
2.28 0.91 0.00 3.60 14.2 2.86 1.21 0.00 5.10 14.0

'acetyl adenylate:CoA 

acetyltransferase'
1.27 0.89 0.00 3.60 14.2 2.05 1.25 0.00 5.10 14.0

'ATP:acetate 

adenylyltransferase'
1.27 0.89 0.00 3.60 14.2 2.05 1.25 0.00 5.10 14.0

'acetyl-CoA:phosphate 

transacetylase'
4.49 1.08 0.56 7.08 13.1 0.96 0.54 0.00 1.96 13.1

'Acetate kinase' 4.49 1.08 0.56 7.08 14.1 0.96 0.54 0.00 1.96 13.4

Metabolic map legend

• Decrease from parent to

mutant.

• Increase from parent to

mutant.

Qualitative changes:

• wt:parent

• mut: mutant.

• on:reaction carries flux

in all samples.

• off: reaction does not

carry flux in any

sample.

• Reactions that change 

directionality are 

represented with the 

directionality of the 

mutant.
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Enzymes Showing Post-Translational Regulation      

(P > 0.99)
Nicotinate-nucleotide:dimethylbenzimidazole phospho-D-

ribosyltransferase

UDP-glucuronate 5-epimerase

Thiamine biosynthesis protein

D-Glucitol:NAD+ 2-oxidoreductase

reduced ferredoxin:dinitrogen oxidoreductase (ATP-hydrolysing)

GTP:GTP guanylyltransferase

propane-1,3-diol:NAD+ 1-oxidoreductase

ATPase, proton translocating

AMP-dependent synthetase and ligase

L-Alanine:tRNA(Ala) ligase (AMP-forming)

Cellodextrin Uptake

Glycogen Cycling 1

glycine:tRNA(Gly) ligase (AMP-forming)

AMP-dependent synthetase and ligase

propane-1,3-diol:NAD+ 1-oxidoreductase

(R)-4-Phosphopantothenate:L-cysteine ligase

L-Aspartate:tRNA(Asp) ligase (AMP-forming)

GTP:GTP guanylyltransferase

Polysaccharide biosynthesis protein

GTP 7,8-8,9-dihydrolase (diphosphate-forming)

UDP-glucose:NAD+ 6-oxidoreductase

L-cysteine:[ThiI] sulfurtransferase

The flux redistribution between parent and mutant strain at key metabolic 

nodes is in good agreement with the results from reference 3, which used 

a different analysis method and a different model.

Loop region
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Top 10 reactions with the highest reduction in flux range.

 pyruvate phosphate dikinase (PPDK)

 oxaloacetate decarboxylase (ODC)

 malic enzyme (MAE) 

 pyruvate formate lyase (PFL) 

 pyruvate ferredoxin oxidoreductase (PFOR) 

 lactate dehydrogenase (LDH)

 alcohol dehydrogenase (AdhE) 

 phosphotransacetylase (PTA)

 citrate synthase (TCA1)

 Ni-Fe energy conserving hydrogenase (ECH)

 Rnf-type NADH:Fd oxidoreductase (RNF) 

 NADH-Fdrd:NADP+ oxidoreductase (NFN)

 NADH-Fdrd bifurcating hydrogenase (BIF) 

 Fe-Fe NADPH-depenent hydrogenase (Fe-H2)

 acetyl adenylate, acetyltransferase(AAC)

 acetate adenylyltransferase(AAT)

 Acetyl-Coa Synthase(ACS)

 Citrate synthase(CS)

 Serine:pyruvate aminotransferase(SPT)

 AA: Acetyl adenylate

 SER:Serione

 HPYR: Hydroxypyruvate

 ALA:Alanine

The proteomics constraints effectively

reduce the flux variability ranges of 24

reactions in the parent and 22 reactions in

the mutant.


