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from lignocellulosic biomass. We envision that ModCell2 will provide a useful approach for modular cell engineering.

Abstract: Metabolic engineering has recently enabled the use of microbes for industrial production of diverse biochemicals. However, developing an optimal strain for synthesis of one product with the existing technologies is laborious and expensive. To accelerate

the process and reduce the cost of strain engineering, we propose the modular cell (ModCell) design principle, which exploits the modular organization of biological networks to design plug-and-play cellular biocatalysts. In this work, we introduce the ModCell2 platform,
which uses multiobjective optimization principles and genome scale models for modular cell design. We use ModCell2 to design the biomass-degrading Clostridium thermocellum modular cell for growth coupled synthesis of multiple biochemicals, e.g., alcohols and esters
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Case Study: Biofuels in C. thermocellum

Clostridium thermocellum DSM1313 Genome Scale Model IAT601
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The refined genome scale model consists of 871 reactions encoded by 601 genes, spanning central and peripheric
metabolic pathways, as well as biomass and cellulosome synthesis pathways.

Thompson, R. A., et al. "Exploring complex cellular phenotypes and model-guided strain design with a novel genome-scale metabolic model of Clostridium
thermocellum DSM 1313 implementing an adjustable cellulosome." Biotechnology for biofuels 9.1 (2016): 194.

Alcohol Production Modules

We targeted different alcohols with biofuel applications. Most of these alcohols were detected* in the wild type C.

thermocellum.

* Holwerda, E. K., et al. "The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading." Biotechnology for
biofuels 7.1 (2014): 155.
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Metabolic maps generated from the model with Escher (escher.github.io) Sl 2-Methyl-1-butanol OE_MH“H_ME”DI

Flux difference (mut.-w.t.)

(-7.342) (12.23)

Value:

A. The avoidance of PPDK is related with Pyrophosphate Metabolism (E).
The preference of ODC over MDH+MAE is justified by the requirements and greater flexibility of the Redox Node (B).
B. RNF directionality adjusts to the optimum cofactor needs of the target product, and to turnover FdRed from PFOR. To
ensure this flexibility NADH must be available. Also, RNF flux in this production strain is 16 fold greater than the wild type.
ECH and Fe-H2 deletions limit the production of hydrogen redirecting electrons towards the target product.
BIF Is required to maintain redox homeostasis.
C. These deletions redirect the electrons original intended for amino acid synthesis towards the target product.
D. We hypothesize these deletions constraint growth rate thus redirecting carbon and electrons from biomass towards product.
Several of these reactions are a consequence of too general annotation (e.g. ACS is unlikely to be present since C. therm.
does not grow on acetate or consume it; The proponyl-CoA/Propanoate cycle is encoded by the same genes as PTA-
ACK- ACS, it is unknown if such reactions occur in C. therm.).
Other (In reference to the table). R04672 is involved in thiamine diphosphate and 2-Acetolactate metabolism. However, this
reaction also causes unrealistic behaviors in the model (i.e. thermodynamically infeasible cycles), a common modeling
Issue which needs to be corrected by further curation.
KOR deletion serves to block isobutanol production in other alcohol production networks. The deletion of KOR iIn the
chassis does not affect the isobutanol production network, because it contains KOR as part of the production module.

Summary of the designs

« Consistent with experimental evidence from ethanol designs: Constrains in hydrogen and ammonia metabolism, together with
RNF overexpression.

« The guantitative analysis of metabolism leads to non-intuitive targets related with pyrophosphate bioenergetic pathways.

» Use of highly flexible Redox Node to allocate electrons into the best cofactor for the current production pathway.

Summary and Future Work

Summary: Mathematical

 Developed ModCell2, a novel method for modular optimization
strain design using multiobjective optimization. \

« Demonstrate ModCell2 for two different types of design '
objectives, weak growth coupled to product formation g . )
and strong growth coupled to product formation. refmz(:r?ént irTFT;)(Ipeerﬂg]rﬁgtti%In

« Use ModCell2 to design C. thermocellum modular . p
cells for high yield production of alcohol biofuels. \

Future work:

 Model generated hypotheses and possible errors need Fundamental Data: Industrial
to be addressed based on literature review and biological Fermentation modular
experimentation. knowledge and “omics strain
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