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ABSTRACT
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Our exponentially growing world population requires a sustainable bioeconomy from renewable and carbon neutral production of energy and materials using lignocellulosic biomass
and organic wastes. Consolidated bioprocessing (CBP) Is a promising technology that utilizes a CBP microorganism capable of performing biomass hydrolysis and fermentation in a
single step. Clostridium thermocellum is a gram positive thermophilic CBP bacterium capable of efficient degradation of untreated lignocellulosic biomass, such as poplar or
switchgrass, to produce biofuels and biomaterial precursors. However, C. thermocellum has complex and poorly understood metabolism hindering metabolic engineering to achieve
high rates, titers, and yields of industrially relevant chemicals, e.qg., alcohols and esters. In this study, we developed an updated genome-scale model of C. thermocellum, named
ICBI655, to account for recent discoveries in the metabolism of C. thermocellum, improve the predictablility of the model by training it with a broad dataset of experimental fluxes and
against known lethality phenotypes, and increase its accessibility and reproducibility through extensive documentation and standard-conforming model organization. Furthermore, we
llustrated the use of the model to generate biological insights from multi-scale datasets by simulating intracellular fluxes consistent with measured metabolite secretion fluxes and
Integration of proteomics data. We anticipate the new model will be useful for metabolic engineering and studying physiology, metabolism, and regulation of C. thermocellum.

New

form

Modeling principles Model training and validation

Training model parameters with comprehensive
experimental flux dataset

What Is a genome-scale metabolic model and
why Is It useful?
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Only reaction stoichiometry information is required. The updated model can predict growth rate more accurately under diverse

conditions than the previous model.

Application example: Insights

extracellular metabolite and proteomics datasets
Dataset and analysis approach

The wildtype strain is compared to the hydG-ech
deletion strain, a mutant for Increased ethanol
production.

Genome (2911 protein coding genes)

Model (854 reactions)

This mutant was cultured in batch reactors (Thompson o s

et al. 2015) and extracellular metabolite profiles were

measured together with proteomics. 271 607 »
The model serves as a scaffold to integrate these two 304 >

Genereaction
associations

disparate data types, together with existing knowledge
of C. thermocellum.

The proteomics data maps to 510 (60%) of the
reactions in the model.

Focus on reactions where proteomics fold change Is consistent with
simulated flux fold change

Fold change (FC) is computed between the wildtype and
mutant form proteomics data in the conventional way.

e The model is constrained to obey measured fluxes and the
% remaining fluxes are simulated. This is done for the wildtype
= and mutant separately. Then FC in flux for each reaction is
< calculated.
fg 76 reactions have consistent FC (i.e., both FC agree in sign and
= are different than 0) in both proteomics and flux simulations.
15 . Discrepancies in FC magnitude can help discover enzyme
ol | | | | catalytic efficiency or regulation by metabolite concentration.
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Fold change contextualization in interactive map

Top downregulated enzymes

ID Formula

Fold change
proteomics pFBA FVA center

SULabc atp_c +h20_c+so4 e — adp_c+h_c+pi_c+sod c -4.6 -0.3 0.8
UMPK atp_c+h_c+ump_c — adp_c +udp_c 2.1 -0.3 0.0
CYSS acser_c+h2s_c —ac_c+cys_L_c -1.8 -0.3 -0.5
UAG4Ei uacgam_c — udpacgal_c -1.5 -0.3 -0.1
IGPDH  eig3p_c — h20_c + imacp_c -1.2 -0.3 -0.1
ACGK  acglu_c +atp_c — acgSp_c + adp_c -1.2 -0.3 -0.3
CTPS1  atp_c+nh4 c+utp_c— adp_c+ctp_c+2.0h_c+pi_c -1.2 -0.3 0.0
FE3abc atp_c+fe3_e+h20_c — adp_c+fe3_c+h_c+pic -1.0 -0.3 -0.1
NADS2 atp_c+dnad c+gln_ L c+h20_c—amp_c+glu_ L c+2.0h_c+nad_c+ppi_c -0.9 -0.3 -0.1
QULNS dhap_c +iasp_c — 2.0 h2o_c + h_c + pi_c + quln_c -0.9 -0.3 -0.1
ACKr actp_c +adp_c — ac_c+atp_c -0.9 -2.7 -0.1
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Multiple tools automate the construction of the model. However a lot of
manual inspection has to be performed.

The previous C. thermocellum model, IAT601 (Thompson et al. 2016)
was used as a starting point to build the updated model, iICBI655.

The model construction process is documented in detail using version
control software and available at hitps://github.com/trinhlab.

Comparison to previous models

The updated model can reconcile lethality phenotypes in key redox mutants
used for ethanol production.

1ISR432 1iCth446 1AT601 iCBI665 iML1515
Strain ATCC27405 ATCC27405 DSM1313 DSM1313 MG1655
Genes 432 446 601 665 1515
Metabolites 583 599 903 795 1877
Reactions 632 660 872 854 2712
Blocked reactions 39.2% 32.1% 40.8% 35.1% 9.8%

Reference

[roberts2010] [dash2017] [thompson2016] This study [monk2017]

The increased number of genes and reduced number of blocked reactions

iIndicates better coverage of metabolic function.

Standard conformance score with Memote

Section

SBO annotation -
Gene annotation -
Reaction annotation 1

Metabolite annotation -

Consistency -

0%

25% 50% 75% 100%
Score

ICBI655 (89%)
iIML1515 (68%)

The updated model conforms
to standards, enabling other
researchers to reproduce this
work and use the model for
further studies.

Top upregulated enzymes

D Formula

Fold change

proteomics pFBA FVA center

RPI rSp_c & ruSp_D ¢ 32 8.7 11.2
PGM 2pg_c < 3pg_c 24 15.2 14.5
DHR dhor__S_c +h20_c <> cbasp_c+h_c 2.4 7.9 7.1
GHMT2r gly_c+h20_c+mlthf c & ser_ L_c +thf ¢ 1.5 7.8 11.9
MDH mal I c+nad ¢ < h c+nadh ¢+ oaa_c 1.4 15.1 14.5
PEPCK _re co2_c + gdp_c + pep_c — gtp_c + 0aa_c 0.9 0.1 0.1
TPI g3p_c < dhap_c 0.9 14.2 14.0
VOR2b 3mob_c +coa_c +2.0fdxo_42 ¢ — co2_c + 2.0 fdxr 42 ¢ +h_c +ibcoa_c 0.9 12.3 0.8
PFL coa_c + pyr_c — accoa_c + for_c 0.5 0.2 0.8
DCTPD dctp_c +h20_c +h_c <> dutp_c + nh4_c 0.5 2.3 1.5
PSAT akg c+pser_ L c— 3php c+glu_ L c 0.5 8.7 15.0
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An interactive metabolic map was built from the model using the software Escher. This map allows to visualize
any from of data that can be mapped to reactions or metabolites. In this case fold change values measured in
proteomics data are included.

Observations regarding the mutant include:
PEPCK and the malate shunt are used instead of PPDK to generate pyruvate. This pathway consumes nadh (MDH) and
produces napdh (ME2).
FRNDPR2r (ferredoxin nadph reductase, NFN) increases, which converts 2 moles of the accumulated reduced
ferredoxin into oxidized ferredoxin using 1 mole of nadh and producing 2 moles of nadph.

Interpretation: The redox imbalance caused by an accumulation of reduced ferredoxin leads to its redox potential
being transferred to nadph, likely activating new pathways capable of recycling nadph. This is a previously
unobserved mechanism to cope with the redox imbalance caused by the deletion of hydrogenases.

CONCLUSIONS

additional confidence In the simulation.

Developed the genome-scale model, ICBIG55, that reflects the most current genetic and metabolic knowledge of the consolidated bioprocessing organism Clostridium thermocellum DSM1313.

Collected a comprehensive dataset of extracellular fluxes to train model parameters, leading to increase prediction accuracy across culture conditions with respect to previous models.

The ICBI655 model correctly predicts lethality of key gene deletion mutants relevant for model-guided design of biocatalytic strains.

The ICBI655 model emphasizes accessibility and reproducibility through interactive metabolic maps and comprehensive documentation.

lllustrated the use of the ICBI655 model to gain insights of intracellular fluxes when only external secretion fluxes were measured for wild type and mutant strains. Proteomics data was integrated to gain
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