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ABSTRACT

CONCLUSIONS

Our exponentially growing world population requires a sustainable bioeconomy from renewable and carbon neutral production of energy and materials using lignocellulosic biomass

and organic wastes. Consolidated bioprocessing (CBP) is a promising technology that utilizes a CBP microorganism capable of performing biomass hydrolysis and fermentation in a

single step. Clostridium thermocellum is a gram positive thermophilic CBP bacterium capable of efficient degradation of untreated lignocellulosic biomass, such as poplar or

switchgrass, to produce biofuels and biomaterial precursors. However, C. thermocellum has complex and poorly understood metabolism hindering metabolic engineering to achieve

high rates, titers, and yields of industrially relevant chemicals, e.g., alcohols and esters. In this study, we developed an updated genome-scale model of C. thermocellum, named

iCBI655, to account for recent discoveries in the metabolism of C. thermocellum, improve the predictability of the model by training it with a broad dataset of experimental fluxes and

against known lethality phenotypes, and increase its accessibility and reproducibility through extensive documentation and standard-conforming model organization. Furthermore, we

illustrated the use of the model to generate biological insights from multi-scale datasets by simulating intracellular fluxes consistent with measured metabolite secretion fluxes and

integration of proteomics data. We anticipate the new model will be useful for metabolic engineering and studying physiology, metabolism, and regulation of C. thermocellum.

• Developed the genome-scale model, iCBI655, that reflects the most current genetic and metabolic knowledge of the consolidated bioprocessing organism Clostridium thermocellum DSM1313.

• Collected a comprehensive dataset of extracellular fluxes to train model parameters, leading to increase prediction accuracy across culture conditions with respect to previous models.

• The iCBI655 model correctly predicts lethality of key gene deletion mutants relevant for model-guided design of biocatalytic strains.

• The iCBI655 model emphasizes accessibility and reproducibility through interactive metabolic maps and comprehensive documentation.

• Illustrated the use of the iCBI655 model to gain insights of intracellular fluxes when only external secretion fluxes were measured for wild type and mutant strains. Proteomics data was integrated to gain

additional confidence in the simulation.
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Model training and validation

• The model parameters (GAM and

NGAM) were trained with an

extensive dataset of measured

fermentation fluxes from literature.

• We identified a good fit for three

separate conditions, cellobiose

chemostat, cellulose chemostat, and

batch reactor.

• This model training helps accurately

predict growth rate and other

phenotypes under diverse

conditions.

Training model parameters with comprehensive

experimental flux dataset

Comparison to previous models

• The increased number of genes and reduced number of blocked reactions

indicates better coverage of metabolic function.

Prediction accuracy of gene lethality in important

biotechnological mutants

• The updated model can reconcile lethality phenotypes in key redox mutants

used for ethanol production.

Comparison of growth-prediction accuracy with

respect to previous C. thermocellum model

• The updated model can predict growth rate more accurately under diverse

conditions than the previous model.

Standard conformance score with Memote

• The updated model conforms

to standards, enabling other

researchers to reproduce this

work and use the model for

further studies.

Software tools

• Multiple tools automate the construction of the model. However a lot of

manual inspection has to be performed.

• The previous C. thermocellum model, iAT601 (Thompson et al. 2016)

was used as a starting point to build the updated model, iCBI655.

• The model construction process is documented in detail using version

control software and available at https://github.com/trinhlab.

What is a genome-scale metabolic model and

why is it useful?

• A genome-scale metabolic model is a curated, genetically- and

biochemically-consistent database of metabolism of an organism.

• The model is part of a design cycle which incorporates our current

knowledge and helps us understand experimental data in a holistic and

quantitative manner.

How can the model be used to calculate fluxes?

• Principles of mass balance, thermodynamics, and mathematical

optimization enable the use of the database to calculate metabolic fluxes.

• Only reaction stoichiometry information is required.

𝑆𝑖𝑗 ≔ Stoichiometric coefficient of 

metabolite 𝑖 in reaction 𝑗
𝑣𝑗 ≔Flux of reaction 𝑗 (mmol/gCDW/hr)

𝐶𝑖 ≔ Concentration of metabolite 𝑖
𝑙𝑗 ≔ Lower flux bound of reaction 𝑗

𝑢𝑗 ≔ Upper flux bound of reaction 𝑗

෍

𝑗∈𝐽

𝑆𝑖𝑗𝑣𝑗 =
𝑑𝐶𝑖

𝑑𝑡
= 0 for all 𝑖 ∈ 𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑠

𝑙𝑗 ≤ 𝑣𝑗 ≤ 𝑢𝑗 for all 𝑗 ∈ 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

Mass balance

Reaction rate bounds

In – out = acc. Steady state assumption

Modeling principles Application example: New insights form

extracellular metabolite and proteomics datasets

• Fold change (FC) is computed between the wildtype and

mutant form proteomics data in the conventional way.

• The model is constrained to obey measured fluxes and the

remaining fluxes are simulated. This is done for the wildtype

and mutant separately. Then FC in flux for each reaction is

calculated.

• 76 reactions have consistent FC (i.e., both FC agree in sign and

are different than 0) in both proteomics and flux simulations.

• Discrepancies in FC magnitude can help discover enzyme

catalytic efficiency or regulation by metabolite concentration.

Focus on reactions where proteomics fold change is consistent with 

simulated flux fold change

Fold change contextualization in interactive map

Top downregulated enzymes

Top upregulated enzymes

• An interactive metabolic map was built from the model using the software Escher. This map allows to visualize

any from of data that can be mapped to reactions or metabolites. In this case fold change values measured in

proteomics data are included.

• Observations regarding the mutant include:
• PEPCK and the malate shunt are used instead of PPDK to generate pyruvate. This pathway consumes nadh (MDH) and

produces napdh (ME2).

• FRNDPR2r (ferredoxin nadph reductase, NFN) increases, which converts 2 moles of the accumulated reduced

ferredoxin into oxidized ferredoxin using 1 mole of nadh and producing 2 moles of nadph.

• Interpretation: The redox imbalance caused by an accumulation of reduced ferredoxin leads to its redox potential

being transferred to nadph, likely activating new pathways capable of recycling nadph. This is a previously

unobserved mechanism to cope with the redox imbalance caused by the deletion of hydrogenases.

Dataset and analysis approach

• The wildtype strain is compared to the hydG-ech

deletion strain, a mutant for increased ethanol

production.

• This mutant was cultured in batch reactors (Thompson

et al. 2015) and extracellular metabolite profiles were

measured together with proteomics.

• The model serves as a scaffold to integrate these two

disparate data types, together with existing knowledge

of C. thermocellum.

• The proteomics data maps to 510 (60%) of the

reactions in the model.

                                  

          

     

   

      

              
            

                     

   


