Design, Techno-Economic Analysis, and Life Cycle Assessment of Consolidated Bioprocessing for Ester Production

<u>Sergio Garcia</u>¹, <u>Rebecca Hanes</u>², Nicholas Grundl², Mary Biddy², and Cong T. Trinh¹

- ¹ The University of Tennessee Knoxville (UTK)
- ² National Renewable Energy Laboratory (NREL)

2019 CBI Annual Science Meeting Asheville, NC

- Part 1: Motivation and strategy for CBP ester production
- Part 2: Models of microbial cell physiology to constrain process simulation
- Part 3: Techno-economic analysis and life cycle assessment to inform R&D
- Summary

- Part 1: Motivation and strategy for CBP ester production
- Part 2: Models of microbial cell physiology to constrain process simulation
- Part 3: Techno-economic analysis and life cycle assessment to inform R&D
- Summary

Importance of sustainable ester production in the emerging bioeconomy

	Long chain fatty acids (C14 +)	Medium chain fatty acids (C5 – C13)	Short chain fatty acids (C1 – C4)
Short and medium chain alcohols (C1-C9)	Solvents, plasticizers and lubricants Ethyl stearate	Solvents, plasticizers and lubricants Hexanedioates (adipates) Decanedioates (sebacates) Ethyl heptanoate Dimethyl terephtalate	Solvents, plasticizers and lubricants Ethyl acetate Butyl propanoate Methyl acrylate Vinyl acetate
	BiodieselFatty acid methyl esters (FAME)Fatty acid ethyl esters (FAEE)Vegetable oils and fatsSunflower oilCocoa butterSoybean oilPalm oilRapeseed oil	Drop-In fuels Ethyl pentanoate, Isobutyl hexanoate Aroma compounds and fragrances Pentanoates	Drop-in fuels Butyl butyrate Aroma compounds and fragrances Ethyl acetate Isoamyl acetate
Long chain alcohols C10+	Waxes, coatings, adhesives, cosmetics Dodecyl hexadecanoate Undecyl hexadecanoate Jojoba oil		Bio Disel Bio Dia
alcohol moie	ety fatty acid moiety		Kruis et al, Biotechnol, Adv.

Expanding current CBP target molecules into esters

- Current CBP production targets are C2 and C4 alcohols using the bacterium *C. thermocellum*
- These alcohol pathways involve acyl-CoA and alcohols, enabling extension towards ester synthesis:
 - Acetyl-CoA, butyryl-CoA, isobutyryl-CoA
 - Ethanol, butanol, isobutanol
- C4-derived esters have low solubility (<5 g/L) as compared to C4 alcohols (~70 g/L):
 - Avoid biocatalyst inhibition associated with alcohols
 - Lower separation costs

OH

C4-derived esters

- butyl acetate
- o isobutyl acetate
- o ethyl butyrate
- \circ butyl butyrate
- o isobutyl butyrate
- o isobutyl lactate

Ο

. . .

Ester Biosynthesis pathway

Ester CBP development approach

1. Seo, Lee, <u>Garcia</u>, and Trinh. Under review (see Seo's #156 and Lee's #178 posters)

2. <u>Garcia</u>, Dash, Maranas, and Trinh. In preparation (see Garcia's poster #145)

6

"One-step" CBP ester production process

- TEA will be used to determine what performance thresholds in the following metrics should the biocatalyst (*C. thermocellum*) meet:
 - Productivity: Rate of product synthesis (g/L/hr)
 - Yield: Fraction of substrate that is converted into product (g product/g substrate)
 - Titer: Final concentration of product (g/L)
 - Toxicity tolerance: Maintain function upon high product concentration (g/L)
- What is needed to accurately simulate this process?

- Part 1: Motivation and strategy for CBP ester production
- Part 2: Models of microbial cell physiology to constrain process simulation
- Part 3: Techno-economic analysis and life cycle assessment to inform R&D
- Summary

Macroscopic kinetic model for bioreactor design

- Phenomenological model is formulated to describe the empirical relationships of key fermentation properties including:
 - Inhibition of microbial growth due to substrate or product concentrations
 - Product synthesis rates associated to growth or stationary phases
- More detailed models (e.g., genome-scale metabolic model*) will be added to integrate biocatalyst and process design.

Model

$$\mu = \begin{cases} \frac{\mu_m S}{S + K_S + (S^2/K_I)} \left(1 - \frac{P}{P_d}\right)^a, & \text{if } P \le P_d \\ 0, & \text{otherwise} \end{cases}$$
(1)
$$\frac{dX}{dt} = \mu X (2)$$

$$\frac{dP}{dt} = \alpha \frac{dX}{dt} + \beta X (3)$$

$$-\frac{dS}{dt} = \frac{1}{Y_{X/S}} \frac{dX}{dt} + \frac{1}{Y_{P/S}} \frac{dP}{dt} + \frac{Y_{B/P}}{Y_{P/S}} \frac{dP}{dt} + mX (4)$$

- (1-2) Growth rate is limited and inhibited by substrate (K_s, K_I) and also inhibited by product (a). Above the toxic product concentration P_d growth does not occur.
- (3) Product synthesis rates occurs in two phases, growth (α) and non-growth (β).
- (4) Mass balance applies to biomass $(Y_{X/S})$, product $(Y_{P/S} = 1.03 \text{ gg}^{-1})$, and byproduct $(Y_{B/P})$.

Modeling of batch experimental kinetics and applications to fed-batch fermentation of Clostridium tyrobutyricum for enhanced butyric acid production. Song et al. Biochem. Eng. 2010.

* See Garcia's et al. poster #145

Macroscopic kinetic model for bioreactor design

- Ester fermentation data is not currently available. So high-substrate loading fermentation data was used and all alcohols and acids were assumed to form esters.
- This is an optimistic assumption, thus if the process is infeasible we can be certain of such result, otherwise we can take a more pessimistic route
- The model, despite its simplicity, provides a good fit for the data! So we are ready for TEA/LCA.

Model fitting results

Parameter	Description	Value
μ_m	Maximum growth rate (h ⁻¹)	0.28
K _s	Substrate saturation constant (gL-1)	2.08
K _I	Substrate inhibition constant (gL-1)	84
P_d	Critical product concentration (gL-1)	10
а	Degree of product inhibition	0.58
α	Growth-associated product formation (gg-1DCW)	1.4
β	Non-growth-associated product formation (gg- 1DCW h ⁻¹)	0.032
$Y_{X/S}$	Stoichiometric yield coefficient for biomass on cellulose substrate (gg ⁻¹)	0.82
$Y_{P/S}$	Stoichiometric yield coefficient for isobutyl acetate product, on cellulose substrate (gg ⁻¹).	(1.03)
Y _{B/P}	Stoichiometric yield coefficient for biproducts, including CO2, amino acids, etc., on cellulose substrate (gg ⁻¹)	1.2
m	Maintenance coefficient (h-1)	0.052

- Part 1: Motivation and strategy for CBP ester production
- Part 2: Models of microbial cell physiology to constrain process simulation
- Part 3: Techno-economic analysis and life cycle assessment to inform R&D
- Summary

Informing R&D with TEA and LCA

Key Questions Being Explored

- How do alternative strategies for production impact overall cost and sustainability?
- How does system robustness (e.g., in conversion yield, product toxicity, other process variables) affect costs, sustainability, and process risks?
- What are the current risk/limitations in the integrated process and how is the basic science tracking to overcome these challenges?
- Key metrics: Minimum Fuel Selling Price (MFSP)(\$/GGE); Greenhouse Gas Emissions (kg CO₂-eq/ton); Cumulative Energy Demand (*MJ*/ton), many others relevant to CBI goals

"One-Step" Process Configuration: Production of Ethyl Butyrate via Mono or mixed Culture

- mono and mixed cultures have similar cost drivers at a steady state level
- *mono* and *mixed* cultures are very different during fermentation/biologically

14

Economic Sensitivity of Mono Culture

Goal:

 Explore MFSP sensitivity to product toxicity and specific glucose uptake rate while all other fermentation parameters constant

Multiple factors affect "net productivity"

- -Is a further increase in specific consumption rate feasible?
- -Is a further increase in stress tolerance feasible?

Economic Sensitivity of Mixed Culture

Goal:

• Explore MFSP sensitivity to product toxicity and specific glucose uptake rate while all other fermentation parameters constant

Proof of Concept TEA+LCA Analysis Impact of Engineering Targets

• Note: This analysis is not for the target ester product, but it is used to illustrate the workflow and potential insights.

Proof of Concept TEA+LCA Analysis Impact of Engineering Targets

CBP/CT researchers with CBI have identified two promising engineering targets to pursue in the two-step process configuration.

- 1. Reduce corn stover milling required → Reduce process energy demand.
- 2. Improve microorganism pH tolerance \rightarrow Reduce the amount of NaOH added to the CBP vessel.

Both targets have the potential to improve economics and sustainability, but are they high-impact enough to make the targets worth pursuing?

Proof of Concept TEA+LCA Analysis Impact of Engineering Targets

Summary

- Research question:
 - Can we extend C2 and C4 alcohol pathways in CBP organisms to produce esters in an economically feasible and environmentally sustainable manner?
- Current status:
 - We have formulated a "one-step" process for CBP ester production and built a microbial fermentation model.
 - Preliminary TEA results indicate that a productivity above ~0.6 g/L/hr at a toxicity threshold of 5 g/L (same as ester solubility) reduces MFSP.
- Future work:
 - Integrate both metabolic and kinetic models together with process modelling.
 - Perform parameter sensitivity for all models.
 - Couple TEA and LCA to assess both the economic feasibility and sustainability of esters used as fuels. Esters may be more economically viable if sold as chemical products.
 - Explore alternative configurations based on different biocatalyst microbes to inform metabolic engineering goals.

Acknowledgements

Help coordinating this work:

• Brian Davison¹

Help obtaining materials and continuing this work:

- Andrew Bartling²
- Gregg Beckham²

¹ Oak Ridge National Laboratory (ORNL)

² National Renewable Energy Laboratory (NREL)

Thank you for your attention!

24, OAK RIDSE National Laboratory