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ABSTRACT

Diversity of cellular metabolism can be harnessed to produce a large space of molecules. However, development of optimal strains with high product titers, rates, and yields required for
Industrial production is laborious and expensive. To accelerate the strain engineering process, we have recently introduced a modular cell design concept that enables rapid generation of
optimal production strains by systematically assembling a modular cell with an exchangeable production module(s) to produce target molecules efficiently. In this study, we formulated the
modular cell design concept as a general multiobjective optimization problem with flexible design objectives derived from mass balance. We developed algorithms and an associated software
package, named ModCell2, to implement the design. We demonstrated that ModCell2 can systematically identify genetic modifications to design modular cells that can couple with a variety of
production modules and exhibit a minimal tradeoff among modularity, performance, and robustness. Analysis of the modular cell designs revealed both intuitive and complex metabolic
architectures enabling modular production of these molecules. We envision ModCell2 provides a powerful tool to guide modular cell engineering and sheds light on modular design principles of
biological systems.
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