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Cell biocatalysis technology: The goal

I Reduce net CO2
emissions

I Facilitate
decentralized
manufacturing
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Cell biocatalysis technology: Current state

(Nielsen and Keasling 2016)
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Modular design concepts

Definition:

“A module is an essential and self-contained functional unit relative
to the product of which it is part. The module has, relative to a
system definition, standardized interfaces and interactions that allow
composition of products by combination.”

Types of modular architecture:



9

Modular design concepts

Definition:

“A module is an essential and self-contained functional unit relative
to the product of which it is part. The module has, relative to a
system definition, standardized interfaces and interactions that allow
composition of products by combination.”

Types of modular architecture:



9

Modular design concepts

Definition:

“A module is an essential and self-contained functional unit relative
to the product of which it is part. The module has, relative to a
system definition, standardized interfaces and interactions that allow
composition of products by combination.”

Types of modular architecture:



9

Modular design concepts

Definition:

“A module is an essential and self-contained functional unit relative
to the product of which it is part. The module has, relative to a
system definition, standardized interfaces and interactions that allow
composition of products by combination.”

Types of modular architecture:



9

Modular design concepts

Definition:

“A module is an essential and self-contained functional unit relative
to the product of which it is part. The module has, relative to a
system definition, standardized interfaces and interactions that allow
composition of products by combination.”

Types of modular architecture:



10

Driving forces and potential tradeoffs of modular design



10

Driving forces and potential tradeoffs of modular design



10

Driving forces and potential tradeoffs of modular design



10

Driving forces and potential tradeoffs of modular design



10

Driving forces and potential tradeoffs of modular design

Driving forces for modularization:

I Innovation: Novel solutions to
existing problems

I Efficiency: Faster and cheaper
product construction and
maintenance

I Customizability: Better tailor
a solution to specifics of the
problem

I Predictability: Robust system
behavior across diverse scenar-
ios
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Applications and challenges in microbial catalysis

I Status: Bioengineering
technologies enable micro-
bial biocatalysis

I Challenge: Design-build-
test cycles are too slow
to make biocatalysis widely
applicable

I Solution: Apply proven
modular design principles to
biocatalyst engineering
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Modular design in synthetic biology

The first wave:
I Basic elements (e.g., rbs, promoters,

repressors) combined to form small
modules (e.g., Switches, oscilators,
logic formulas.)

I Modules can be used to regulate
gene expression, protein function,
metabolism, and cell–cell communica-
tion.

The second wave:
I Basic parts and modules need to be

integrated to create systems-level cir-
cuitry

I Develop abstract engineering principles
and potentially harness biologically-
unique features such as adaptation

I Develop better computational models
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Modular cell (ModCell) biocatalyst

Current approach:
I Integral design of one strain to

make a targeted product.

I Efficiency: Combine common ele-
ments among the different target
phenotypes in the chassis, reduc-
ing redundant engineering efforts.

I Predictability: Define and re-uses
chassis interfaces to operate with
modules, increasing robustness.
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Basics of constraint-based modeling

A B
v1vin

C
v2 vout

Metabolic fluxes vj (mmol/gCDW/hr)

Mass balance for each metabolite in the network:

A: dCA
dt = vin − v1 =

s.s.
0

B: dCB
dt = v1 − v2 = 0

C: dCC
dt = v2 − vout = 0

Lower and upper bounds for each reaction:
10 ≤ vin ≤ 10 ← Specify measured flux
0 ≤ v1 ≤ 1000 ← Irreversible reaction

− 1000 ≤ v2 ≤ 1000 ← Reversible reaction
0 ≤ vout ≤ 1000
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Constraint-based modeling at the genome-scale
With genomic and bibliomic information, constraint-based stoichiometric models can be
built at the genome-scale.
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Constraint-based modeling at the genome-scale

Model iCBI665 iML1515 Yeast 7.6 Recon3D
Organism C. thermocellum E. coli S. cerevisiae H. Sapiens
Genes 665 1515 1149 2248
Metabolites 795 1877 3991 5835
Reactions 854 2712 2691 10600
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Modular cell biocatalyst
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Mathematical formulation of ModCell

max
yj ,zjk

(f1, f2, . . . , f|K|)
T s.t.

fk ∈ arg max
{

1
f max
k

∑
j∈Jk

cjkvjk s.t.

∑
j∈Jk

Sijkvjk = 0 for all i ∈ Ik

ljk ≤ vjk ≤ ujk for all j ∈ Jk

ljkdjk ≤ vjk ≤ ujkdjk for all j ∈ C

where djk = yj ∨ zjk

}
for all k ∈ K∑

j∈C

(1 − yj) ≤ α

∑
j∈C

zjk ≤ βk for all k ∈ K

zjk ≤ (1 − yj) for all j ∈ C, k ∈ K

vj=product,k

vj=biomass,k

yjzjk
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What defines a solution?

Multi-objective optimization problem

max
x∈X

F (x) = (f1(x), f2(x), . . .)T

f1

f2

Definition of domination
A vector a dominates another vector b
(denoted a ≺ b) iff ai ≥ bi ∀i ∈ {1, 2, . . . ,K}
and ai 6= bi for at least one i .

Pareto set
PS := {x ∈ X : @ x ′ ∈ X ,F(x ′) ≺ F(x)}

Pareto front
PF := {F (x) : x ∈ PS}

Utopia point
max(f1(x)) = f1(x) = f2(x) = ...
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Solution algorithms for multi-objective optimization

MILP (Mixed integer linear programming)
I Convert to single-objective problem
I Need a priori specification of preference
I Optimality guaranteed

Goal attaintment formulation: define a
performance target for each objective gk

min
∑
k∈K

δk (1)

s.t.
f ′
k + δk ≥ gk ∀k ∈ K (2)
δk ≥ 0 ∀k ∈ K (3)
f ′ ∈ Ω (4)

MOEA (Multi-objective evolutionary
algorithm)
I Directly obtain Pareto front
I Can be easily adapted to different mod-

els and design objectives
I Scalable to HPC for problems with

many objectives
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Basics of genetic algorithms

Population-based heuristic optimization
(e.g., Genetic algorithms):
I Individual: Encodes the variables

of the problem and hence has an
objective value associated with it.

I Operators: Heuristic that modify
individuals to enhance their objec-
tive values.

The population of individuals is mod-
ified with operators to identify poten-
tially optimal solutions to the optimiza-
tion problem.

Population

Initialization

Termination

Parents

Offspring

Recombination

and mutation

Survivor selection

Parent selection
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Basics of genetic algorithms

Population-based heuristic optimization
(e.g., Genetic algorithms):
I Individual: Encodes the variables

of the problem and hence has an
objective value associated with it.

I Operators: Heuristic that modify
individuals to enhance their objec-
tive values.

The population of individuals is mod-
ified with operators to identify poten-
tially optimal solutions to the optimiza-
tion problem.

The 2006 NASA ST5 spacecraft an-
tenna. This complicated shape was
found by an evolutionary computer de-
sign program to create the best radia-
tion pattern.
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Scaling MOEA for many-objective problems

I We wish to solve modular cell design problems with 100s of products
I Many-objective problems are notoriusly difficult to solve and HPC approaches are

not well explored in the field
I Develop and benchmark an HPC MOEA
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MOEA parallelization
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Universal design for 20 products
Phenotypic spaces:
I Represent feasible

metabolic states accord-
ing to stoichiometric
constraints

I Gray region: Wild type +
production module

I Red region: Designed
chassis + produc-
tion module

The universal design leads to
high product yields at the
maximum growth rate for all
combinations of chassis and
production modules.
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Identification of chassis metabolic interfaces
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Natural modularity and flexibility of core metabolism enables universal
design
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Input: 161 endogenous products
Endogenous metabolites in E. coli
that are organic and can be
coupled to growth under anaerobic
conditions.
I Diverse molecule size
I Highly reduced due to anaero-

bic conditions.
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ModCell tools

Primer: Metabolic
engineering strategies
repeat across target
molecules

ModCell2: Multi-
objective optimization
formulation to design
Pareto optimal chas-
sis and modules

Modcell2-HPC: De-
sign chassis for hun-
dredths of endoge-
nous products provid-
ing general principles
for synthetic and nat-
ural modular design

MODCELL: Design
strains for individ-
ual products and find
common manipula-
tions

ModCell2-MILP:
Identify optimal
solutions to design
universal chassis and
define key metabolic
interfaces

Modular design prin-
ciples in metabolic en-
gineering for efficient
and robust systems
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