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Abstract
Motivation. Microbial biocatalysis can in principle be engineered to
obtain all types of chemicals, including material precursors, fuels, and
drugs, from renewable feedstocks, e.g., plant biomass, organic waste,
CO2, etc. However, the current R&D cycles needed to develop econom-
ically feasible microbial biocatalysis processes are too costly and slow,
due primarily to the repetition of tasks and lack of standardization.

Approach. To accelerate microbial biocatalyst R&D, we propose to ap-
ply modular design principles widely implemented in conventional engi-
neering1 to metabolic engineering.2 We formulate these design principles
into an approach named Modular Cell (ModCell),3 and mathematically
express the design problem as a multi-objective optimization problem.4

Results. The multi-objective modular strain design problem was previ-
ously solved with multi-objective evolutionary algorithms (MOEA).4,5 In
this study we propose a MILP-compatible formulation that leads to op-
timal solutions, enumerates the full space of alternative solutions, and
allows to formulate the design goals in conceptual terms closer to practi-
cal goals. We used ModCell2-MILP to design a modular cell universally
compatible with a wide variety of modules, and identified the metabolic
features that make such design possible.

Methods
ModCell design concept

Fig. 1: Principles of modular cell design. (a) Modular (chassis) cell. (b) Interfaces.
(c) Production modules. (d) Production strains. A modular cell is designed to pro-
vide the necessary precursors for biosynthesis pathway modules that are independently
assembled with the modular cell to generate production strains exhibiting desirable phe-
notypes. The wGCP phenotype, one of the possible design objectives, enforces the
coupling between desirable product synthesis rate and the maximum cellular growth
rate.

ModCell multi-objective optimization formula-
tion
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The design objectives for each production module fk (Fig. 2) are to be
simultaneously optimized (1) subject to: i) modeling constraints (2-5)
that predict metabolic fluxes vjk (mmol/gCDW/hr) using a steady-state
metabolic model, where Sijk is the stoichiometric coefficient of metabo-
lite i in reaction j of production network k; and ii) design constraints
(6-8), where the binary design variables yj and zjk represent reaction
deletions, limited by α and module reaction insertions, limited by β, re-
spectively.
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Fig. 2: Phenotypic spaces for different strain design objectives including: (a) weak
growth coupling (wGCP), (b) strong growth coupling (sGCP), and (c) no-growth pro-
duction (NPG). vP,k,µ is the minimum product formation rate at the maximum growth
rate for production network k, and vmaxP,k,µ is the maximum product secretion rate at-
tainable. vP,k,µ̄ and vmaxP,k,µ̄are the minimum and maximum product formation rates for
production network k during the stationary phase, respectively.

Single-objective reformulations
After linearizing the constraints of the multi-objective optimization prob-
lem (1-8) (not shown here), the objective function is noted as f ′k and the
set of linear constraints is noted as Ω. Now, the objective function can be
linearized in two ways:

Blended formulation
max

∑
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ak f
′
k s.t. f ′ ∈ Ω (9)

Here ak is a scalar weighting factor associated with the design objective
of product k. Different Pareto optimal solutions can be obtained by vary-
ing these weights. In practice, the product priority, ak, can be determined
by criteria such as product market value or “pathway readiness level”
(i.e., certain pathways are easier to engineer than others).

Goal attainment formulation
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In the goal attainment problem (10-13), a target value gk is defined for
each objective k. The problem seeks to minimize the variables δ+k and
δ−k that represent the deficiency and excess of the objective f ′k from the
target value gk, respectively. Weighting parameters a+k and a−k correspond
to different types of discrepancy to be minimized. In practice, the goal
attainment formulation corresponds to the identification of the modular
cell compatible (i.e., a module k is said to be compatible if f ′k ≥ gk) with
the largest number of modules.

Results
Design of universal modular cell
• We validated correctness of the MILP formulation and optimized so-

lution times using techniques such as bound tightening and benders
decomposition (not shown here).

• We applied the goal attainment formulation to design a universal mod-
ular cell that displays gk ≥ 0.5 (Fig. 3) for all 20 biochemically di-
verse products (Table 1).

Fig. 3: Identification of a universal modular cell compatible with all production modules
using the wGCP design objective. (a) Goal programming solutions using increasing α
and β values with a target goal gk = 0.5. The parameters α = 6 and β = 1 are suffi-
cient to identify a universal ModCell design meeting the required goal for all production
networks. (b) Comparison between the yield performances of the designed modular
production strains and maximum theoretical values. (c) The feasible flux spaces for
the wild-type (gray) and designed modular production strains (crimson). Based on the
wGCP design phenotype, to increase growth rate, each mutant must increase product
synthesis rate. The genetic manipulations of this universal modular cell design are indi-
cated in the metabolic map of Figure 4c.

• Despite the broad diversity of the production modules in terms of car-
bon and electron precursor requirements, the universal modular cell
is compatible with all of them (Table 1).

Overall reaction DoR
Production network yields at

maximum growth rate
product ac co2 for succ

pyr + nadh→ ethanol | accoa + 2 nadh→ ethanol (native) 7.0 0.58 0.01 0.27 0.04 -
oaa + glu + 2 atp + 2 nadph + nadh→ akg + propanol 6.7 0.31 0.36 0.07 0.18 -
2 accoa + 4 nadh→ butanol 6.5 0.59 0.01 0.28 0.04 -
2 pyr + nadph + nadh→ isobutanol 6.5 0.62 - 0.31 - -
oaa + glu + accoa + 3 nadh + 2 atp + 2 nadph→ akg + pentanol 6.4 0.50 0.21 0.24 0.03 -
succ + akg + atp + 4 nadh + accoa→ ac + 1,4-butanediol 5.5 0.46 0.33 0.17 - -
→ pyruvate 3.0 0.46 - -0.16 - 0.66
pyr + nadh→ D-lactate 3.7 0.91 - - - -
accoa→ atp + acetate 3.5 0.60 0.60 -0.30 0.61 -
accoa + succoa + 2 nadh→ atp + adipic acid 4.0 0.82 0.05 0.04 0.06 -
accoa + pyr + nadh→ ethyl acetate 5.0 0.63 - - 0.32 -
accoa + oaa + glu + 2 atp + 2 nadph + nadh→ akg + propyl acetate 5.2 0.41 0.30 - 0.24 -
accoa + 2 pyr + nadph + nadh→ isobutyl acetate 5.3 0.36 - 0.02 0.06 0.52
2 accoa + 3 nadh + pyr→ ethyl butanoate 5.3 0.61 - 0.09 0.23 -
2 accoa + 3 nadh + oaa + glu + 2 atp + 2 nadph→ akg + propyl butanoate 5.4 0.68 0.03 0.23 0.04 -
4 accoa + 6 nadh→ butyl butanoate 5.5 0.61 - 0.14 0.18 -
2 accoa + 3 nadh + 2 pyr + nadph→ isobutyl butanoate 5.5 0.64 - 0.16 0.16 -
oaa + glu + accoa + 2 nadh + 2 atp + 2 nadph + pyr→ akg + ethyl pentanoate 5.4 0.68 0.03 0.23 0.04 -
oaa + glu + accoa + 2 nadh + 2 atp + 3 nadph + 2 pyr→ akg + isobutyl pentanoate 5.6 0.67 0.01 0.25 0.03 -
2 oaa + 2 glu + 2 accoa + 4 nadh + 4 atp + 4 nadph→ 2 akg + pentyl pentanoate 5.6 0.53 0.22 0.20 0.02 -

Table 1: Overall production module stoichiometries, degree of reduction (DoR) of the
final product (mol e− / mol C), and metabolite secretion profiles (mol C / mol C) from
simulated flux distributions of the universal modular cell design.

Flexible metabolic flux capacity of E. coli cen-
tral metabolism enables the design of a univer-
sal modular cell
• We simulated metabolic fluxes in each production strain of the univer-

sal design using pFBA and flux sampling, leading to the identification
of highly-variable reactions that activate to interface with specific pro-
duction modules (Fig. 4).

• The flexible flux capacities and modularity of core E. coli metabolism,
consistent with fluxomics data (Fig. 4d), enable this universal modular
cell.

Fig. 4: (a) Standard deviation of each simulated reaction flux across production net-
works. (b) Scaled fluxes of the 51 reactions with standard deviation magnitude above
0.2, excluding proton, water transport, and exchange reactions. Scaled fluxes corre-
spond to the simulated flux distribution value of each reaction divided by the maximum
value of that reaction across all production networks, thus a scaled flux of 0 indicates
a given reaction does not carry any flux, and a scaled flux of 1 indicates that a reaction
carries the highest flux observed for that particular reaction across production networks.
Reactions with the same flux are separated by a vertical line (|). (c) Reactions colored
in red are deleted in the chassis, while the production networks where such reactions
are used as module reaction are included in an adjacent gray box. (d) Violin plot com-
paring the simulated fluxes (reference flux distributions) that appear in each production
network against metabolic fluxes measured in a variety of conditions and mutants.6 The
solid lines within the “violins” correspond to samples.
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