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Abstract
Motivation Our exponentially growing world population demands a sus-
tainable bioeconomy from renewable and carbon neutral production of
energy and materials using lignocellulosic biomass and organic wastes.
Consolidated bio-processing (CBP) is a promising technology based on
a microorganism capable of biomass hydrolysis and fermentation in a
single step. Clostridium thermocellum is a gram-positive thermophilic
CBP bacterium capable of efficient degradation of untreated lignocellu-
losic biomass, such as poplar or switchgrass, to produce biofuels and
biomaterial precursors (Fig. 1). However, its complex and poorly under-
stood metabolism hinders metabolic engineering to achieve high rates,
titers, and yields of industrially relevant chemicals, e.g., alcohols and es-
ters.1,2

Fig. 1: CBP consists in the direct fermentation of lignocellulosic biomass, removing
pretreatment costs that remain a roadblock in biocatalysis technologies.

Approach To unravel the complexity of C. thermocellum’s metabolism
and enable comprehensive and systematic analysis to drive discovery and
strain design, we developed a genome-scale metabolic model using the
most recent standards3 and modeling tools (Fig. 2).4

Fig. 2: Genome-scale metabolic modeling involves extensive literature curation in com-
bination with efficient data retrieval and automation tools.

Results In this study, we developed an updated genome-scale model of
C. thermocellum, named iCBI655, to account for recent discoveries in
the metabolism of C. thermocellum, improve the predictability of the
model by training it with a broad dataset of experimental fluxes and
against known lethality phenotypes, and increase its accessibility and re-
producibility through extensive documentation and standard-conforming
model organization. Furthermore, we illustrated the use of the model to
generate biological insights from published datasets by simulating intra-
cellular fluxes consistent with measured metabolite secretion fluxes and
integration of proteomics data.

Methods
Model training
After extensive manual curation of the model (Fig. 2), we gathered a
comprehensive flux data set to train model ATP maintenance parameters
(Fig. 3a), which demonstrated better growth prediction accuracy under
diverse conditions, with respect to the previous model iAT601 (Fig. 3b,c).

Fig. 3: (a.) Training of GAM and NGAM parameters. (b.) Comparison of growth pre-
diction error between iCBI655 and iAT601. (c.) Error in growth predictions, from b.,
under batch and chemostat conditions.

Standard-conformance validation with memote
We corrected modeling inconsistencies and included extensive meta-
data in a standard-conforming manner, obtaining a high memote3 score
(Fig. 4).

Fig. 4: memote3 scores comparing iCBI655 and iML1515. Overall score noted in
legend.

'omics integration
We developed a novel method to make use of proteomics data in combi-
nation with a genome-scale model (Fig. 5).

Fig. 5: Procedure to integrate multi-scale into the model. Fold change (FC) is used as
an anchor for comparison. FC for all reactions is computed between two conditions
using measured fluxes as constraints. Then consistent cases between computed FC and
measured FC are identified for further study.

Results
Updated genome-scale model and better pheno-
type prediction
The iCBI655 model was built starting from the most recently published
and comprehensive genome-scale model of C. thermocellum, iAT6015

(Table 1).

iSR432 iCth446 iAT601 iCBI665 iML1515

Strain ATCC27405 ATCC27405 DSM1313 DSM1313 MG1655
Genes 432 446 601 665 1515
Metabolites 583 599 903 795 1877
Reactions 632 660 872 854 2712
Blocked reactions 39.2% 32.1% 40.8% 35.1% 9.8%
Reference [6] [7] [5] This study [8]

Table 1: Comparison of all genome-scale models of C. thermocellum and the latest E.
coli genome-scale model.

Although genetic manipulation in C. thermocellum remains challeng-
ing and most studies focus in engineering for overproduction of target
compounds, the model was also successfully validated against the few
known1 lethal gene deletions (Table 2.

Gene deletions Medium Fraction of W.T. growth rate (%)
iAT601 iCBI655 In vivo

hydg MTC 100 100 73
hydg-ech MTC 85 85 67
hydg-pta-ack MTC 100 100 48
hydG-ech-pfl MTC 58 0 0
hydG-ech-pfl MTC + fumarate 377 726 0
hydG-ech-pfl MTC + sulfate 58 65 +
hydG-ech-pfl MTC + ketoisovalerate 97 101 +

Table 2: Comparison of mutant growth rate prediction between iAT601 and iCBI655. To
simulate mutant genotypes for growth rate prediction, gene deletions were applied and
growth rate was maximized without constraining secretion fluxes to known values, to
recreate simulations for strain design were such additional constraints are not available.
In vivo values are taken form Thompson et al.1, where growth rate in some cases was
not reported, but growth recovery was reported, this is indicated with the “+” symbol.

Integrating extracellular metabolite and pro-
teomics datasets provides novel biological in-
sights
We applied the proteomics integration method (Fig. 5) to compare a wild-
type strain with the ∆hydG-∆ech deletion mutant, that removes all major
hydrogenases (BIF, H2ASE syn, and ECH) to redirect electrons towards
ethanol production. The analysis revealed the following features:

• Redox and hydrogenase metabolism (Fig. 6b): FRNDPR2r (a.k.a.
NFN) translation increases to convert one mol of fdxr 42 and one mol
of nadh to two moles of nadph.

• Pyruvate metabolism (Fig. 6c): PPDK translation decreases while the
malate shunt (PEPCK, MDH, ME2) increases. While both pathways
convert pep to pyr, the later converts one mol of nadh formed in gly-
colysis to nadph.

• Sulfur metabolism (Fig. 6d): Sulfate reduction diminishes (lower
translation of ABC uptake transporter and lower translation of HSOR)
to preserve nadph.

• Overall, this reveals that the ∆hydG-∆ech copes with redox imbal-
ance by increasing nadph production which is oxidized in byproduct
secreting pathways (e.g., isobutanol).

• Future engineering strategies can be focused in further constraining
the undesired pathways that consume nadph by directly targeting
them or by targeting the sources of nadph discovered here.

Fig. 6: Consistent reactions (i.e., both simulated flux and proteomics FC have the same
sign) are colored according to proteomics FC value, which is also included next to re-
action labels. (a.) Overall map of central metabolism (b.) Redox and hydrogenase
metabolism. (c.) Pyruvate metabolism. (d.) Sulfur metabolism.
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