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Modular design concepts

A module is an essential and self-contained functional unit relative
to the product of which it is part. The module has, relative to a
system definition, standardized interfaces and interactions that allow

composition of products by combination.
Module:

> Replaceable
» Changes system functionality

Types of modular architecture:

Architecture type Example Architecture type Example
Sectional Fluid pipe
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« Modules require a chassis

« All componenets are modules
* Modules share a common interface

* Modules share a common interface

Architecture type Example
Slot Car tires
() ‘ o'; Q) b
Features

« Modules require a chassis
« Each module has a unique interface
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Principles of Modular Cell (ModCell) design
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Principles of Modular Cell (ModCell) design

» The chassis can be com-
bined with various modules
in a plug-and-play fashion to
obtain production strains

» Each production strain dis-

plays a desirable phenotype

» Chassis, modules, and inter-

faces have to be designed in
accordance to this desirable
functions

» ModCell brings the same

advantages of modularity in
conventional engineering to
metabolic engineering: effi-
ciency and robustness
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Mathematical formulation of ModCell
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Mathematical formulation of ModCell
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Flux prediction based, but
not limited, in constraint-
based models

New strain design approach
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an arbitrary number of tar-
get phenotypes, thus reduc-
ing redundant engineering
efforts
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What defines a solution?

Multi-objective optimization
problem

max () = (A0, f(x),..)T
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A vector a dominates another
vector b (denoted a < b) iff
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a; # b; for at least one .

Pareto set

PS :={xe X :3x € X,F(x') < F(x)}

Pareto front

PF :={F(x): x € PS}



What defines a solution?

Multi-objective optimization Definition of domination

problem A vector a dominates another

B T vector b (denoted a < b) iff
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Two complementary solvers: MOEA and MILP
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« Sample many unbiased solutions
+ Determine important candidates for
genetic manipulation

» MOEA is a highly flexible heuristic optimization method but cannot
guarantee optimality.
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« Sample many unbiased solutions
+ Determine important candidates for
genetic manipulation

» MOEA is a highly flexible heuristic optimization method but cannot
guarantee optimality.

» MILP is more restricted than MOEA in formulation and harder to
solve but can ensure optimality (See Poster P6)

« Identify optimal design
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» MOEA is a highly flexible heuristic optimization method but cannot
guarantee optimality.

» MILP is more restricted than MOEA in formulation and harder to
solve but can ensure optimality (See Poster P6)
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Measuring MOEA performance

MOEAs do not guarantee optimality, how do we asses the performance
to choose the best algorithm and parameters? We measure the distance
between the best known Pareto front (PF*) and the current solution (PF):

a. C. e. Gen. 1 Gen. 3
Gen. 2 Gen. 4 (PF")
A 1[
~ ~ M ppr ~ 08
[9)
2 2 ¥ 206
s} o a kst
kol o] Q0.4
a o) 2 Ke)
o o |c=3 v O o2
» > 0 ———
o 0 02040608 1
Objective 1 Objective 1
b d. f c € e GD
HV 2 A,
4 o A 15 fep
s PF \
~ W t\d\ﬂ»' EL o~ \v/f P T
g P g & o 0>J I o SR
=1 S b= ST IS
O 193 *
2 dyy + dog v 2 Q @
8 |[er- Gu ¥ g € 0.5
1GD = M v

> P> 0 .
2 3 4
Objective 1 Objective 1 Generations



Population size is the most important factor in MOEA
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Input: 20 diverse products
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Isobutanol Butanol Adipic acid 1,4-Butanediol

Pentanol

E. coli as a parent to
build the chassis.

6 alcohols from C2 to
C5.

4 carboxylic acids
from C2 to C6.

10 derived esters
from C4 to C10.
Esters are synthe-
sized from an acyl-
CoA and alcohol by
the AAT enzyme.



Results: Highly compatible chassis
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sign objective above 60% of maximum for 17 out of 20 products
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Results: Highly compatible chassis
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» 4 gene-knockouts (adhE, IdhA, ack-pta, zwf) obtain wGCP de-
sign objective above 60% of maximum for 17 out of 20 products

» No loss of performance with respect to conventional single-
product (integral) strain design
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Summary

> Inspired by conventional engineering modularity, develop mod-
ular cell design concept to accelerate biocatalyst R&D cycles.

» Propose modular cell design as a multi-objective optimization
problem, this framework allows to simultaneously design multi-
ple target phenotypes minimizing redundant efforts.

» Demonstrate MOEA and MILP approaches to solve the opti-
mization problem.

» Design a chassis cell compatible with growth-coupled synthe-
sis of 17 out of 20 products without loss of performance with
respect to integral (conventional) strain design.

ModCell
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