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Modular design concepts

A module is an essential and self-contained functional unit relative
to the product of which it is part. The module has, relative to a
system definition, standardized interfaces and interactions that allow
composition of products by combination.
Module:
I Replaceable
I Changes system functionality

Types of modular architecture:
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Driving forces and potential tradeoffs of modular design

Driving forces for
modularization:
I Innovation
I Efficiency
I Customizability
I Predictability

Potential drawbacks:
I Novelty cost
I Need for special-

ization
I Transportation

constraints
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Principles of Modular Cell (ModCell) design

I The chassis can be com-
bined with various modules
in a plug-and-play fashion to
obtain production strains

I Each production strain dis-
plays a desirable phenotype

I Chassis, modules, and inter-
faces have to be designed in
accordance to this desirable
functions

I ModCell brings the same
advantages of modularity in
conventional engineering to
metabolic engineering: effi-
ciency and robustness
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Mathematical formulation of ModCell

max
yj ,zjk

(f1, f2, . . . , f|K|)T s.t.

∑
j∈C

(1− yj ) ≤ α

∑
j∈C

zjk ≤ βk for all k ∈ K

zjk ≤ (1− yj ) for all j ∈ C, k ∈ K

fk ∈ arg max

{
1

f max
k

∑
j∈Jk

cjk vjk s.t.

∑
j∈Jk

Sijk vjk = 0 for all i ∈ Ik

ljk ≤ vjk ≤ ujk for all j ∈ Jk

ljkdjk ≤ vjk ≤ ujkdjk for all j ∈ C

where djk = yj ∨ zjk

}
for all k ∈ K

I Multi-objective optimiza-
tion. Design objective fk
is the target phenotype of
production strain k .

I Simultaneous design of
chassis (yj) and modules
(zjk)

I Flux prediction based, but
not limited, in constraint-
based models

I New strain design approach
to simultaneously consider
an arbitrary number of tar-
get phenotypes, thus reduc-
ing redundant engineering
efforts



9

Mathematical formulation of ModCell

max
yj ,zjk

(f1, f2, . . . , f|K|)T s.t.

∑
j∈C

(1− yj ) ≤ α

∑
j∈C

zjk ≤ βk for all k ∈ K

zjk ≤ (1− yj ) for all j ∈ C, k ∈ K

fk ∈ arg max

{
1

f max
k

∑
j∈Jk

cjk vjk s.t.

∑
j∈Jk

Sijk vjk = 0 for all i ∈ Ik

ljk ≤ vjk ≤ ujk for all j ∈ Jk

ljkdjk ≤ vjk ≤ ujkdjk for all j ∈ C

where djk = yj ∨ zjk

}
for all k ∈ K

vj=P,k,m

vj=µ,k ,m

vj=P,k ,m

vj=µ,k,m

vj=P,k,m

vj=µ,k,m

vmax
P,k,µ

µmin

vP,k,µ

µmax

vmax
P,k,µ̄

0

vP,k,µ̄

vP,k,µ

µmax

vmax
P,k,µ̄

0

vP,k,µ̄

f wGCPk =
vP,k,µ
vmax
P,k,µ

f sGCPk =
vP,k,µ
vmax
P,k,µ

vP,k,µ̄
vmax
P,k,µ̄

f NGPk =
vP,k,µ̄
vmax
P,k,µ̄

a b c

I Multi-objective optimiza-
tion. Design objective fk
is the target phenotype of
production strain k .

I Simultaneous design of
chassis (yj) and modules
(zjk)

I Flux prediction based, but
not limited, in constraint-
based models

I New strain design approach
to simultaneously consider
an arbitrary number of tar-
get phenotypes, thus reduc-
ing redundant engineering
efforts



9

Mathematical formulation of ModCell

max
yj ,zjk

(f1, f2, . . . , f|K|)T s.t.

∑
j∈C

(1− yj ) ≤ α

∑
j∈C

zjk ≤ βk for all k ∈ K

zjk ≤ (1− yj ) for all j ∈ C, k ∈ K

fk ∈ arg max

{
1

f max
k

∑
j∈Jk

cjk vjk s.t.

∑
j∈Jk

Sijk vjk = 0 for all i ∈ Ik

ljk ≤ vjk ≤ ujk for all j ∈ Jk

ljkdjk ≤ vjk ≤ ujkdjk for all j ∈ C

where djk = yj ∨ zjk

}
for all k ∈ K

zjk

Modules

yj

Chassis

I Multi-objective optimiza-
tion. Design objective fk
is the target phenotype of
production strain k .

I Simultaneous design of
chassis (yj) and modules
(zjk)

I Flux prediction based, but
not limited, in constraint-
based models

I New strain design approach
to simultaneously consider
an arbitrary number of tar-
get phenotypes, thus reduc-
ing redundant engineering
efforts



9

Mathematical formulation of ModCell

max
yj ,zjk

(f1, f2, . . . , f|K|)T s.t.

∑
j∈C

(1− yj ) ≤ α

∑
j∈C

zjk ≤ βk for all k ∈ K

zjk ≤ (1− yj ) for all j ∈ C, k ∈ K

fk ∈ arg max

{
1

f max
k

∑
j∈Jk

cjk vjk s.t.

∑
j∈Jk

Sijk vjk = 0 for all i ∈ Ik

ljk ≤ vjk ≤ ujk for all j ∈ Jk

ljkdjk ≤ vjk ≤ ujkdjk for all j ∈ C

where djk = yj ∨ zjk

}
for all k ∈ K

zjk

Modules

yj

Chassis

I Multi-objective optimiza-
tion. Design objective fk
is the target phenotype of
production strain k .

I Simultaneous design of
chassis (yj) and modules
(zjk)

I Flux prediction based, but
not limited, in constraint-
based models

I New strain design approach
to simultaneously consider
an arbitrary number of tar-
get phenotypes, thus reduc-
ing redundant engineering
efforts



9

Mathematical formulation of ModCell

max
yj ,zjk

(f1, f2, . . . , f|K|)T s.t.

∑
j∈C

(1− yj ) ≤ α

∑
j∈C

zjk ≤ βk for all k ∈ K

zjk ≤ (1− yj ) for all j ∈ C, k ∈ K

fk ∈ arg max

{
1

f max
k

∑
j∈Jk

cjk vjk s.t.

∑
j∈Jk

Sijk vjk = 0 for all i ∈ Ik

ljk ≤ vjk ≤ ujk for all j ∈ Jk

ljkdjk ≤ vjk ≤ ujkdjk for all j ∈ C

where djk = yj ∨ zjk

}
for all k ∈ K

zjk

Modules

yj

Chassis

I Multi-objective optimiza-
tion. Design objective fk
is the target phenotype of
production strain k .

I Simultaneous design of
chassis (yj) and modules
(zjk)

I Flux prediction based, but
not limited, in constraint-
based models

I New strain design approach
to simultaneously consider
an arbitrary number of tar-
get phenotypes, thus reduc-
ing redundant engineering
efforts



10

Outline

1. Modular design
1.1 Modularity in engineering
1.2 Modularity in nature

2. Modular cells
2.1 Conceptual formulation
2.2 Mathematical formulation

3. Solution algorithms
3.1 What defines a solution?
3.2 Two complementary solvers: MOEA and MILP
3.3 Measuring MOEA performance

4. Application example
4.1 Input: 20 diverse products
4.2 Results: Highly compatible chassis



11

What defines a solution?

Multi-objective optimization
problem

max
x∈X

F (x) = (f1(x), f2(x), . . .)T

f1

f2

Definition of domination
A vector a dominates another
vector b (denoted a ≺ b) iff
ai ≥ bi ∀i ∈ {1, 2, . . . ,K} and
ai 6= bi for at least one i .

Pareto set

PS := {x ∈ X : @ x ′ ∈ X ,F (x ′) ≺ F (x)}

Pareto front

PF := {F (x) : x ∈ PS}

I Utopia point
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Two complementary solvers: MOEA and MILP

I MOEA is a highly flexible heuristic optimization method but cannot
guarantee optimality.

I MILP is more restricted than MOEA in formulation and harder to
solve but can ensure optimality (See Poster P6)
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Measuring MOEA performance

MOEAs do not guarantee optimality, how do we asses the performance
to choose the best algorithm and parameters? We measure the distance
between the best known Pareto front (PF ∗) and the current solution (PF ):
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Population size is the most important factor in MOEA

I Coverage is the most consistent metric.
I For small population algorihtm heuristics matter.

I For large population sizes several algorithms attain the best re-
sults.
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Input: 20 diverse products

I E. coli as a parent to
build the chassis.

I 6 alcohols from C2 to
C5.

I 4 carboxylic acids
from C2 to C6.

I 10 derived esters
from C4 to C10.

I Esters are synthe-
sized from an acyl-
CoA and alcohol by
the AAT enzyme.
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Results: Highly compatible chassis

I 4 gene-knockouts (adhE, ldhA, ack-pta, zwf ) obtain wGCP de-
sign objective above 60% of maximum for 17 out of 20 products

I No loss of performance with respect to conventional single-
product (integral) strain design
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Summary

I Inspired by conventional engineering modularity, develop mod-
ular cell design concept to accelerate biocatalyst R&D cycles.

I Propose modular cell design as a multi-objective optimization
problem, this framework allows to simultaneously design multi-
ple target phenotypes minimizing redundant efforts.

I Demonstrate MOEA and MILP approaches to solve the opti-
mization problem.

I Design a chassis cell compatible with growth-coupled synthe-
sis of 17 out of 20 products without loss of performance with
respect to integral (conventional) strain design.
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